Câu hỏi:

05/08/2025 25 Lưu

Các đường tiệm cận của đồ thị hàm số \[y = \frac{{2x + 1}}{{x - 3}}\] tạo với hai trục tọa độ một hình chữ nhật có diện tích bằng

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Đồ thị hàm số \[y = \frac{{2x + 1}}{{x - 3}}\] có các đường tiệm cận là \[x = 3,y = 2\].

Do vậy hai đường tiệm cận tạo với hai trục tọa độ hình chữ nhật diện tích bằng \[6\].

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Gọi \(M\left( {x;\frac{{2x + 1}}{{x - 1}}} \right) \in \left( C \right)\). Theo đề bài ta có: \(d\left( {M,TCD} \right) = d\left( {M,Ox} \right)\)

\( \Leftrightarrow \left| {x - 1} \right| = \left| {\frac{{2x + 1}}{{x - 1}}} \right|\)điều kiện \(\left( {x \ne 1} \right)\) \( \Leftrightarrow \left| {{{\left( {x - 1} \right)}^2}} \right| = \left| {2x + 1} \right|\) \( \Leftrightarrow \left[ \begin{array}{l}x = 0\\x = 4\end{array} \right.\)

Có hai điểm \[{M_1}\left( {0; - 1} \right)\] và \[{M_2}\left( {4;3} \right)\]. Vậy \[{y_1} + {y_2} =  - 1 + 3 = 2\]

Lời giải

Ta có \(\mathop {\lim }\limits_{x \to  \pm \infty } \frac{{x + 1}}{{3x - 3}} = \mathop {\lim }\limits_{x \to  \pm \infty } \frac{{1 + \frac{1}{x}}}{{3 - \frac{3}{x}}} = \frac{1}{3} \Rightarrow \) Đường thẳng \(y = \frac{1}{3}\) là tiệm cận ngang của đồ thị hàm số.

Trả lời:\(y = \frac{{x + 1}}{{3x - 3}}\)  

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP