Câu hỏi:

07/08/2025 813 Lưu

Một nhà sản xuất cần làm những hộp đựng hình trụ có thể tích 1 lít. Tìm các kích thước của hộp đựng để chi phí vật liệu dùng để sản xuất là nhỏ nhất (kết quả được tính theo centimét và làm tròn đến chữ số thập phân thứ hai).

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Đổi 1 lít = 1000 cm3 .

Gọi r (cm)  là bán kính đáy của hình trụ, h (cm)  là chiều cao của hình trụ.

Diện tích toàn phần của hình trụ là: S = 2πr2 + 2πrh .

Do thể tích của hình trụ là 1000 cm3 nên ta có: 1000 = V = πr2h, hay h = 1000πr2 .

Do đó, diện tích toàn phần của hình trụ là: S = 2πr2 + 2000r, r > 0

Ta cần tìm r  sao cho S  đạt giá trị nhỏ nhất. Ta có:

Một nhà sản xuất cần làm những hộp đựng hình trụ có thể tích 1 lít. Tìm các kích thước của hộp đựng để chi phí vật liệu dùng để sản xuất  (ảnh 1)

Bảng biến thiên:

Một nhà sản xuất cần làm những hộp đựng hình trụ có thể tích 1 lít. Tìm các kích thước của hộp đựng để chi phí vật liệu dùng để sản xuất  (ảnh 2)

Khi đó: h = 1000πr2=1000π3250000π2=100250π3

Vậy cần sản xuất các hộp đựng hình trụ có bán kính đáy r = 500π35.42 (cm) và chiều cao h = 100250π310.84 (cm) .

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

a) Do đồ thị hàm số giao với trục hoành tại các điểm x = 20; x = 50, x = 100 nên phương trình f(x) = 0 có 3 nghiệm 20, 50, 100, từ đó ta có: y = a(x – 20)(x – 50)(x – 100).

Mặt khác, tại điểm x = 0 ta có y = 50, suy ra: 50 = a(0 – 20)(0 – 50 )(0 – 100) hay a = \[ - \frac{1}{{2000}}\].

Suy ra: \[y =  - \frac{1}{{2000}}\left( {x - 20} \right)\left( {x - 50} \right)\left( {x - 100} \right) =  - \frac{1}{{2000}}{x^3} + \frac{{17}}{{200}}{x^2} - 4x + 50\].

b) Các điểm cần thìm chính là các điểm cực trị của hàm số: \[y = f(x) =  - \frac{1}{{2000}}{x^3} + \frac{{17}}{{200}}{x^2} - 4x + 50\]

\[y' =  - \frac{3}{{2000}}{x^2} + 1\frac{{17}}{{200}}x - 4 = 0 \Leftrightarrow x = \frac{{100}}{3};x = 80\]

Ta có các điểm cực trị của hàm số f(x) là \[A\left( {\frac{{10}}{3}; - \frac{{200}}{{27}}} \right);B\left( {80;18} \right)\]

Lời giải

Ta có: P'(t)=0,75αa-0.75t(b+e-0.75t)2', t0

Theo đề bài, ta có: P(0) = 20  và P'(0) = 12. Do đó, ta có hệ phương trình:

Giả sử số lượng của một quần thể nấm men tại môi trường nuôi cấy trong phòng thí nghiệm được mô hình hoá bằng hàm số  (ảnh 1)

Giải hệ phương trình này, ta được a = 25  và b = 14 .

Khi đó, P'(t)=18,75e-0.75t(14+e-0.75t)2 > 0, t0, tức là số lượng quần thể nấm men luôn tăng.

Tuy nhiên, do Giả sử số lượng của một quần thể nấm men tại môi trường nuôi cấy trong phòng thí nghiệm được mô hình hoá bằng hàm số  (ảnh 2) nên số lượng quần thể nấm men tăng nhưng không vượt quá 100 tế bào.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP