Một nhà sản xuất cần làm những hộp đựng hình trụ có thể tích 1 lít. Tìm các kích thước của hộp đựng để chi phí vật liệu dùng để sản xuất là nhỏ nhất (kết quả được tính theo centimét và làm tròn đến chữ số thập phân thứ hai).
Một nhà sản xuất cần làm những hộp đựng hình trụ có thể tích 1 lít. Tìm các kích thước của hộp đựng để chi phí vật liệu dùng để sản xuất là nhỏ nhất (kết quả được tính theo centimét và làm tròn đến chữ số thập phân thứ hai).
Quảng cáo
Trả lời:
Đổi 1 lít = 1000 cm3 .
Gọi r (cm) là bán kính đáy của hình trụ, h (cm) là chiều cao của hình trụ.
Diện tích toàn phần của hình trụ là: .
Do thể tích của hình trụ là 1000 cm3 nên ta có: 1000 = V = , hay .
Do đó, diện tích toàn phần của hình trụ là:
Ta cần tìm r sao cho S đạt giá trị nhỏ nhất. Ta có:

Bảng biến thiên:

Khi đó:
Vậy cần sản xuất các hộp đựng hình trụ có bán kính đáy và chiều cao .
Hot: 1000+ Đề thi giữa kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- 20 đề thi tốt nghiệp môn Toán (có đáp án chi tiết) ( 38.500₫ )
- 250+ Công thức giải nhanh môn Toán 12 (chương trình mới) ( 18.000₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Bộ đề thi tốt nghiệp 2025 các môn Toán, Lí, Hóa, Văn, Anh, Sinh, Sử, Địa, KTPL (có đáp án chi tiết) ( 36.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
a) Do đồ thị hàm số giao với trục hoành tại các điểm x = 20; x = 50, x = 100 nên phương trình f(x) = 0 có 3 nghiệm 20, 50, 100, từ đó ta có: y = a(x – 20)(x – 50)(x – 100).
Mặt khác, tại điểm x = 0 ta có y = 50, suy ra: 50 = a(0 – 20)(0 – 50 )(0 – 100) hay a = \[ - \frac{1}{{2000}}\].
Suy ra: \[y = - \frac{1}{{2000}}\left( {x - 20} \right)\left( {x - 50} \right)\left( {x - 100} \right) = - \frac{1}{{2000}}{x^3} + \frac{{17}}{{200}}{x^2} - 4x + 50\].
b) Các điểm cần thìm chính là các điểm cực trị của hàm số: \[y = f(x) = - \frac{1}{{2000}}{x^3} + \frac{{17}}{{200}}{x^2} - 4x + 50\]
\[y' = - \frac{3}{{2000}}{x^2} + 1\frac{{17}}{{200}}x - 4 = 0 \Leftrightarrow x = \frac{{100}}{3};x = 80\]
Ta có các điểm cực trị của hàm số f(x) là \[A\left( {\frac{{10}}{3}; - \frac{{200}}{{27}}} \right);B\left( {80;18} \right)\]
Lời giải
Gọi \(x\left( {{\rm{\;m}}} \right)\) là chiều rộng của khu đất hình chữ nhật cần rào.
Theo đề bài, ta có \(0 < x \le 15\).
Diện tích khu đất này là \(200\left( {{\rm{\;}}{{\rm{m}}^2}} \right)\) nên chiều dài của khu đất là \(\frac{{200}}{x}\left( {{\rm{\;m}}} \right)\).
Tổng chiều dài lưới thép rào quanh khu đất là \(L\left( x \right) = 2x + \frac{{200}}{x}\left( {{\rm{\;m}}} \right)\).
Xét hàm số: \(L\left( x \right) = 2x + \frac{{200}}{x}\), với \(x \in \left( {0;15} \right]\).
Ta có: \(L'\left( x \right) = 2 - \frac{{200}}{{{x^2}}} = \frac{{2{x^2} - 200}}{{{x^2}}}\);
\(L'\left( x \right) = 0 \Leftrightarrow x = 10({\rm{\;do\;}}x > 0){\rm{.}}\)
Ta có: 
\(L\left( {10} \right) = 40\)
\(L\left( {15} \right) = \frac{{130}}{3}.\)
Bảng biến thiên:

Dựa vào bảng biến thiên, chiều dài lưới thép ngắn nhất là 40m khi chiều rộng khu đất này là x = 10(m) (và chiều dài là .
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.



