Câu hỏi:

07/08/2025 5,730 Lưu

Một nhà sản xuất cần làm những hộp đựng hình trụ có thể tích 1 lít. Tìm các kích thước của hộp đựng để chi phí vật liệu dùng để sản xuất là nhỏ nhất (kết quả được tính theo centimét và làm tròn đến chữ số thập phân thứ hai).

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Đổi 1 lít = 1000 cm3 .

Gọi r (cm)  là bán kính đáy của hình trụ, h (cm)  là chiều cao của hình trụ.

Diện tích toàn phần của hình trụ là: S = 2πr2 + 2πrh .

Do thể tích của hình trụ là 1000 cm3 nên ta có: 1000 = V = πr2h, hay h = 1000πr2 .

Do đó, diện tích toàn phần của hình trụ là: S = 2πr2 + 2000r, r > 0

Ta cần tìm r  sao cho S  đạt giá trị nhỏ nhất. Ta có:

Một nhà sản xuất cần làm những hộp đựng hình trụ có thể tích 1 lít. Tìm các kích thước của hộp đựng để chi phí vật liệu dùng để sản xuất  (ảnh 1)

Bảng biến thiên:

Một nhà sản xuất cần làm những hộp đựng hình trụ có thể tích 1 lít. Tìm các kích thước của hộp đựng để chi phí vật liệu dùng để sản xuất  (ảnh 2)

Khi đó: h = 1000πr2=1000π3250000π2=100250π3

Vậy cần sản xuất các hộp đựng hình trụ có bán kính đáy r = 500π35.42 (cm) và chiều cao h = 100250π310.84 (cm) .

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

a) Do đồ thị hàm số giao với trục hoành tại các điểm x = 20; x = 50, x = 100 nên phương trình f(x) = 0 có 3 nghiệm 20, 50, 100, từ đó ta có: y = a(x – 20)(x – 50)(x – 100).

Mặt khác, tại điểm x = 0 ta có y = 50, suy ra: 50 = a(0 – 20)(0 – 50 )(0 – 100) hay a = \[ - \frac{1}{{2000}}\].

Suy ra: \[y =  - \frac{1}{{2000}}\left( {x - 20} \right)\left( {x - 50} \right)\left( {x - 100} \right) =  - \frac{1}{{2000}}{x^3} + \frac{{17}}{{200}}{x^2} - 4x + 50\].

b) Các điểm cần thìm chính là các điểm cực trị của hàm số: \[y = f(x) =  - \frac{1}{{2000}}{x^3} + \frac{{17}}{{200}}{x^2} - 4x + 50\]

\[y' =  - \frac{3}{{2000}}{x^2} + 1\frac{{17}}{{200}}x - 4 = 0 \Leftrightarrow x = \frac{{100}}{3};x = 80\]

Ta có các điểm cực trị của hàm số f(x) là \[A\left( {\frac{{10}}{3}; - \frac{{200}}{{27}}} \right);B\left( {80;18} \right)\]

Lời giải

Gọi \(x\left( {{\rm{\;m}}} \right)\) là chiều rộng của khu đất hình chữ nhật cần rào.

Theo đề bài, ta có \(0 < x \le 15\).

Diện tích khu đất này là \(200\left( {{\rm{\;}}{{\rm{m}}^2}} \right)\) nên chiều dài của khu đất là \(\frac{{200}}{x}\left( {{\rm{\;m}}} \right)\).

Tổng chiều dài lưới thép rào quanh khu đất là \(L\left( x \right) = 2x + \frac{{200}}{x}\left( {{\rm{\;m}}} \right)\).

Xét hàm số: \(L\left( x \right) = 2x + \frac{{200}}{x}\), với \(x \in \left( {0;15} \right]\).

Ta có: \(L'\left( x \right) = 2 - \frac{{200}}{{{x^2}}} = \frac{{2{x^2} - 200}}{{{x^2}}}\);

\(L'\left( x \right) = 0 \Leftrightarrow x = 10({\rm{\;do\;}}x > 0){\rm{.}}\)

Ta có: Anh Nam có một mảnh đất rộng và muốn dành ra một khu đất hình chữ nhật có diện tích 200m^2 để trồng vài loại cây mới (ảnh 2)

\(L\left( {10} \right) = 40\)

\(L\left( {15} \right) = \frac{{130}}{3}.\)

Bảng biến thiên:

Anh Nam có một mảnh đất rộng và muốn dành ra một khu đất hình chữ nhật có diện tích 200m^2 để trồng vài loại cây mới (ảnh 3)

Dựa vào bảng biến thiên, chiều dài lưới thép ngắn nhất là 40m khi chiều rộng khu đất này là x = 10(m) (và chiều dài là 20010 = 20 (m) .

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP