Giả sử số lượng của một quần thể nấm men tại môi trường nuôi cấy trong phòng thí nghiệm được mô hình hoá bằng hàm số \(P\left( t \right) = \frac{a}{{b + {e^{ - 0,75t}}}}\), trong đó thời gian \(t\) được tính bằng giờ. Tại thời điểm ban đầu \(t = 0\), quần thể có 20 tế bào và tăng với tốc độ 12 tế bào/giờ. Tìm các giá trị của \(a\) và \(b\). Theo mô hình này, điều gì xảy ra với quần thể nấm men về lâu dài?
Giả sử số lượng của một quần thể nấm men tại môi trường nuôi cấy trong phòng thí nghiệm được mô hình hoá bằng hàm số \(P\left( t \right) = \frac{a}{{b + {e^{ - 0,75t}}}}\), trong đó thời gian \(t\) được tính bằng giờ. Tại thời điểm ban đầu \(t = 0\), quần thể có 20 tế bào và tăng với tốc độ 12 tế bào/giờ. Tìm các giá trị của \(a\) và \(b\). Theo mô hình này, điều gì xảy ra với quần thể nấm men về lâu dài?
Quảng cáo
Trả lời:
Ta có:
Theo đề bài, ta có: P(0) = 20 và P'(0) = 12. Do đó, ta có hệ phương trình:

Giải hệ phương trình này, ta được a = 25 và .
Khi đó, , tức là số lượng quần thể nấm men luôn tăng.
Tuy nhiên, do nên số lượng quần thể nấm men tăng nhưng không vượt quá 100 tế bào.
Hot: 500+ Đề thi thử tốt nghiệp THPT các môn, ĐGNL các trường ĐH... file word có đáp án (2025). Tải ngay
- 20 đề thi tốt nghiệp môn Toán (có đáp án chi tiết) ( 38.500₫ )
- 20 Bộ đề, Tổng ôn, sổ tay môn Toán (có đáp án chi tiết) ( 55.000₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội, TP Hồ Chí Minh (2 cuốn) ( 150.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Đổi 1 lít = 1000 cm3 .
Gọi r (cm) là bán kính đáy của hình trụ, h (cm) là chiều cao của hình trụ.
Diện tích toàn phần của hình trụ là: .
Do thể tích của hình trụ là 1000 cm3 nên ta có: 1000 = V = , hay .
Do đó, diện tích toàn phần của hình trụ là:
Ta cần tìm r sao cho S đạt giá trị nhỏ nhất. Ta có:

Bảng biến thiên:

Khi đó:
Vậy cần sản xuất các hộp đựng hình trụ có bán kính đáy và chiều cao .
Lời giải
Xét hàm số \(f\left( x \right) = \left( {{x_0} - x} \right){x^2}\) với \({x_0}\) cố định và \(\frac{1}{2}{x_0} \le x \le {x_0}\).
Do \(k\) là hằng số nên vận tốc của luồng khí một cơn ho lớn nhất khi \(f\left( x \right)\) đạt giá trị lớn nhất.
Ta có \(f\left( x \right) = - {x^3} + {x_0}{x^2}\);
\(f'\left( x \right) = - 3{x^2} + 2{x_0}x\)
Bảng biến thiên:



Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.