Khi một vật lạ mắc kẹt trong khí quản khiến ta phải ho, cơ hoành đẩy lên trên gây ra tăng áp lực trong phổi, theo đó cuống họng co thắt làm hẹp khí quản khiến không khí đi qua mạnh hơn. Đối với một lượng không khí bị đẩy ra trong một khoảng thời gian cố định, khí quản càng nhỏ thì luồng không khí càng đẩy ra nhanh hơn. Vận tốc luồng khí thoát ra càng cao, lực tác động lên vật lạ càng lớn. Qua nghiên cứu một số trường hợp, người ta nhận thấy vận tốc \(v\) của luồng khí liên hệ với bán kính \(x\) của khí quản theo công thức: \(v(x) = k({x_0} - x){x^2}\) với \(\frac{1}{2}{x_0} \le x \le {x_0}\). Trong đó \(k\) là hằng số \((k > 0)\) và \({x_0}\) là bán kính khí quản ở trạng thái bình thường. Tìm \(x\) theo \({x_0}\) để vận tốc của luồng khí một cơn ho trong trường hợp này là lớn nhất.
Khi một vật lạ mắc kẹt trong khí quản khiến ta phải ho, cơ hoành đẩy lên trên gây ra tăng áp lực trong phổi, theo đó cuống họng co thắt làm hẹp khí quản khiến không khí đi qua mạnh hơn. Đối với một lượng không khí bị đẩy ra trong một khoảng thời gian cố định, khí quản càng nhỏ thì luồng không khí càng đẩy ra nhanh hơn. Vận tốc luồng khí thoát ra càng cao, lực tác động lên vật lạ càng lớn. Qua nghiên cứu một số trường hợp, người ta nhận thấy vận tốc \(v\) của luồng khí liên hệ với bán kính \(x\) của khí quản theo công thức: \(v(x) = k({x_0} - x){x^2}\) với \(\frac{1}{2}{x_0} \le x \le {x_0}\). Trong đó \(k\) là hằng số \((k > 0)\) và \({x_0}\) là bán kính khí quản ở trạng thái bình thường. Tìm \(x\) theo \({x_0}\) để vận tốc của luồng khí một cơn ho trong trường hợp này là lớn nhất.
Quảng cáo
Trả lời:
Xét hàm số \(f\left( x \right) = \left( {{x_0} - x} \right){x^2}\) với \({x_0}\) cố định và \(\frac{1}{2}{x_0} \le x \le {x_0}\).
Do \(k\) là hằng số nên vận tốc của luồng khí một cơn ho lớn nhất khi \(f\left( x \right)\) đạt giá trị lớn nhất.
Ta có \(f\left( x \right) = - {x^3} + {x_0}{x^2}\);
\(f'\left( x \right) = - 3{x^2} + 2{x_0}x\)
Bảng biến thiên:



Hot: 500+ Đề thi thử tốt nghiệp THPT các môn, ĐGNL các trường ĐH... file word có đáp án (2025). Tải ngay
- 20 đề thi tốt nghiệp môn Toán (có đáp án chi tiết) ( 38.500₫ )
- 20 Bộ đề, Tổng ôn, sổ tay môn Toán (có đáp án chi tiết) ( 55.000₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội, TP Hồ Chí Minh (2 cuốn) ( 150.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Đổi 1 lít = 1000 cm3 .
Gọi r (cm) là bán kính đáy của hình trụ, h (cm) là chiều cao của hình trụ.
Diện tích toàn phần của hình trụ là: .
Do thể tích của hình trụ là 1000 cm3 nên ta có: 1000 = V = , hay .
Do đó, diện tích toàn phần của hình trụ là:
Ta cần tìm r sao cho S đạt giá trị nhỏ nhất. Ta có:

Bảng biến thiên:

Khi đó:
Vậy cần sản xuất các hộp đựng hình trụ có bán kính đáy và chiều cao .
Lời giải
Ta có:
Theo đề bài, ta có: P(0) = 20 và P'(0) = 12. Do đó, ta có hệ phương trình:

Giải hệ phương trình này, ta được a = 25 và .
Khi đó, , tức là số lượng quần thể nấm men luôn tăng.
Tuy nhiên, do nên số lượng quần thể nấm men tăng nhưng không vượt quá 100 tế bào.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.