Anh Nam có một mảnh đất rộng và muốn dành ra một khu đất hình chữ nhật có diện tích \(200{\rm{\;}}{{\rm{m}}^2}\) để trồng vài loại cây mới. Anh dự kiến rào quanh ba cạnh của khu đất hình chữ nhật này bằng lưới thép, cạnh còn lại (chiều dài) sẽ tận dụng bức tường có sẵn (Hình 1.36). Do điều kiện địa lí, chiều rộng khu đất không vượt quá \(15{\rm{\;m}}\), hỏi chiều rộng của khu đất này bằng bao nhiêu để tổng chiều dài lưới thép cần dùng là ngắn nhất (nghĩa là chi phí rào lưới thép thấp nhất)?
Anh Nam có một mảnh đất rộng và muốn dành ra một khu đất hình chữ nhật có diện tích \(200{\rm{\;}}{{\rm{m}}^2}\) để trồng vài loại cây mới. Anh dự kiến rào quanh ba cạnh của khu đất hình chữ nhật này bằng lưới thép, cạnh còn lại (chiều dài) sẽ tận dụng bức tường có sẵn (Hình 1.36). Do điều kiện địa lí, chiều rộng khu đất không vượt quá \(15{\rm{\;m}}\), hỏi chiều rộng của khu đất này bằng bao nhiêu để tổng chiều dài lưới thép cần dùng là ngắn nhất (nghĩa là chi phí rào lưới thép thấp nhất)?

Quảng cáo
Trả lời:

Gọi \(x\left( {{\rm{\;m}}} \right)\) là chiều rộng của khu đất hình chữ nhật cần rào.
Theo đề bài, ta có \(0 < x \le 15\).
Diện tích khu đất này là \(200\left( {{\rm{\;}}{{\rm{m}}^2}} \right)\) nên chiều dài của khu đất là \(\frac{{200}}{x}\left( {{\rm{\;m}}} \right)\).
Tổng chiều dài lưới thép rào quanh khu đất là \(L\left( x \right) = 2x + \frac{{200}}{x}\left( {{\rm{\;m}}} \right)\).
Xét hàm số: \(L\left( x \right) = 2x + \frac{{200}}{x}\), với \(x \in \left( {0;15} \right]\).
Ta có: \(L'\left( x \right) = 2 - \frac{{200}}{{{x^2}}} = \frac{{2{x^2} - 200}}{{{x^2}}}\);
\(L'\left( x \right) = 0 \Leftrightarrow x = 10({\rm{\;do\;}}x > 0){\rm{.}}\)
Ta có:
\(L\left( {10} \right) = 40\)
\(L\left( {15} \right) = \frac{{130}}{3}.\)
Bảng biến thiên:

Dựa vào bảng biến thiên, chiều dài lưới thép ngắn nhất là 40m khi chiều rộng khu đất này là x = 10(m) (và chiều dài là .
Hot: Danh sách các trường đã công bố điểm chuẩn Đại học 2025 (mới nhất) (2025). Xem ngay
- 250+ Công thức giải nhanh môn Toán 12 (chương trình mới) ( 18.000₫ )
- 20 Bộ đề, Tổng ôn, sổ tay môn Toán (có đáp án chi tiết) ( 55.000₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Bộ đề thi tốt nghiệp 2025 các môn Toán, Lí, Hóa, Văn, Anh, Sinh, Sử, Địa, KTPL (có đáp án chi tiết) ( 36.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Đổi 1 lít = 1000 cm3 .
Gọi r (cm) là bán kính đáy của hình trụ, h (cm) là chiều cao của hình trụ.
Diện tích toàn phần của hình trụ là: .
Do thể tích của hình trụ là 1000 cm3 nên ta có: 1000 = V = , hay .
Do đó, diện tích toàn phần của hình trụ là:
Ta cần tìm r sao cho S đạt giá trị nhỏ nhất. Ta có:

Bảng biến thiên:

Khi đó:
Vậy cần sản xuất các hộp đựng hình trụ có bán kính đáy và chiều cao .
Lời giải
a) Do đồ thị hàm số giao với trục hoành tại các điểm x = 20; x = 50, x = 100 nên phương trình f(x) = 0 có 3 nghiệm 20, 50, 100, từ đó ta có: y = a(x – 20)(x – 50)(x – 100).
Mặt khác, tại điểm x = 0 ta có y = 50, suy ra: 50 = a(0 – 20)(0 – 50 )(0 – 100) hay a = \[ - \frac{1}{{2000}}\].
Suy ra: \[y = - \frac{1}{{2000}}\left( {x - 20} \right)\left( {x - 50} \right)\left( {x - 100} \right) = - \frac{1}{{2000}}{x^3} + \frac{{17}}{{200}}{x^2} - 4x + 50\].
b) Các điểm cần thìm chính là các điểm cực trị của hàm số: \[y = f(x) = - \frac{1}{{2000}}{x^3} + \frac{{17}}{{200}}{x^2} - 4x + 50\]
\[y' = - \frac{3}{{2000}}{x^2} + 1\frac{{17}}{{200}}x - 4 = 0 \Leftrightarrow x = \frac{{100}}{3};x = 80\]
Ta có các điểm cực trị của hàm số f(x) là \[A\left( {\frac{{10}}{3}; - \frac{{200}}{{27}}} \right);B\left( {80;18} \right)\]
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.