Câu hỏi:

07/08/2025 13 Lưu

Anh Nam có một mảnh đất rộng và muốn dành ra một khu đất hình chữ nhật có diện tích \(200{\rm{\;}}{{\rm{m}}^2}\) để trồng vài loại cây mới. Anh dự kiến rào quanh ba cạnh của khu đất hình chữ nhật này bằng lưới thép, cạnh còn lại (chiều dài) sẽ tận dụng bức tường có sẵn (Hình 1.36). Do điều kiện địa lí, chiều rộng khu đất không vượt quá \(15{\rm{\;m}}\), hỏi chiều rộng của khu đất này bằng bao nhiêu để tổng chiều dài lưới thép cần dùng là ngắn nhất (nghĩa là chi phí rào lưới thép thấp nhất)?

Anh Nam có một mảnh đất rộng và muốn dành ra một khu đất hình chữ nhật có diện tích 200m^2 để trồng vài loại cây mới (ảnh 1)

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Gọi \(x\left( {{\rm{\;m}}} \right)\) là chiều rộng của khu đất hình chữ nhật cần rào.

Theo đề bài, ta có \(0 < x \le 15\).

Diện tích khu đất này là \(200\left( {{\rm{\;}}{{\rm{m}}^2}} \right)\) nên chiều dài của khu đất là \(\frac{{200}}{x}\left( {{\rm{\;m}}} \right)\).

Tổng chiều dài lưới thép rào quanh khu đất là \(L\left( x \right) = 2x + \frac{{200}}{x}\left( {{\rm{\;m}}} \right)\).

Xét hàm số: \(L\left( x \right) = 2x + \frac{{200}}{x}\), với \(x \in \left( {0;15} \right]\).

Ta có: \(L'\left( x \right) = 2 - \frac{{200}}{{{x^2}}} = \frac{{2{x^2} - 200}}{{{x^2}}}\);

\(L'\left( x \right) = 0 \Leftrightarrow x = 10({\rm{\;do\;}}x > 0){\rm{.}}\)

Ta có: Anh Nam có một mảnh đất rộng và muốn dành ra một khu đất hình chữ nhật có diện tích 200m^2 để trồng vài loại cây mới (ảnh 2)

\(L\left( {10} \right) = 40\)

\(L\left( {15} \right) = \frac{{130}}{3}.\)

Bảng biến thiên:

Anh Nam có một mảnh đất rộng và muốn dành ra một khu đất hình chữ nhật có diện tích 200m^2 để trồng vài loại cây mới (ảnh 3)

Dựa vào bảng biến thiên, chiều dài lưới thép ngắn nhất là 40m khi chiều rộng khu đất này là x = 10(m) (và chiều dài là 20010 = 20 (m) .

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Đổi 1 lít = 1000 cm3 .

Gọi r (cm)  là bán kính đáy của hình trụ, h (cm)  là chiều cao của hình trụ.

Diện tích toàn phần của hình trụ là: S = 2πr2 + 2πrh .

Do thể tích của hình trụ là 1000 cm3 nên ta có: 1000 = V = πr2h, hay h = 1000πr2 .

Do đó, diện tích toàn phần của hình trụ là: S = 2πr2 + 2000r, r > 0

Ta cần tìm r  sao cho S  đạt giá trị nhỏ nhất. Ta có:

Một nhà sản xuất cần làm những hộp đựng hình trụ có thể tích 1 lít. Tìm các kích thước của hộp đựng để chi phí vật liệu dùng để sản xuất  (ảnh 1)

Bảng biến thiên:

Một nhà sản xuất cần làm những hộp đựng hình trụ có thể tích 1 lít. Tìm các kích thước của hộp đựng để chi phí vật liệu dùng để sản xuất  (ảnh 2)

Khi đó: h = 1000πr2=1000π3250000π2=100250π3

Vậy cần sản xuất các hộp đựng hình trụ có bán kính đáy r = 500π35.42 (cm) và chiều cao h = 100250π310.84 (cm) .

Lời giải

Ta có: P'(t)=0,75αa-0.75t(b+e-0.75t)2', t0

Theo đề bài, ta có: P(0) = 20  và P'(0) = 12. Do đó, ta có hệ phương trình:

Giả sử số lượng của một quần thể nấm men tại môi trường nuôi cấy trong phòng thí nghiệm được mô hình hoá bằng hàm số  (ảnh 1)

Giải hệ phương trình này, ta được a = 25  và b = 14 .

Khi đó, P'(t)=18,75e-0.75t(14+e-0.75t)2 > 0, t0, tức là số lượng quần thể nấm men luôn tăng.

Tuy nhiên, do Giả sử số lượng của một quần thể nấm men tại môi trường nuôi cấy trong phòng thí nghiệm được mô hình hoá bằng hàm số  (ảnh 2) nên số lượng quần thể nấm men tăng nhưng không vượt quá 100 tế bào.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP