Cho hàm bậc ba \(y = f\left( x \right)\) có đồ thị trong hình bên. Số nghiệm của phương trình \(f\left( x \right) = 2\) là
Cho hàm bậc ba \(y = f\left( x \right)\) có đồ thị trong hình bên. Số nghiệm của phương trình \(f\left( x \right) = 2\) là

Quảng cáo
Trả lời:

Ta có: số nghiệm của phương trình \(f\left( x \right) = 2\) bằng số giao điểm giữa đồ thị hàm số \(y = f\left( x \right)\) và đường thẳng \(y = 2\).
Dựa vào hình vẽ, hai đồ thị cắt nhau tại 3 điểm phân biệt.

Vậy phương trình \(f\left( x \right) = 2\) có 3 nghiệm.
Hot: Danh sách các trường đã công bố điểm chuẩn Đại học 2025 (mới nhất) (2025). Xem ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Đổi 1 lít = 1000 cm3 .
Gọi r (cm) là bán kính đáy của hình trụ, h (cm) là chiều cao của hình trụ.
Diện tích toàn phần của hình trụ là: .
Do thể tích của hình trụ là 1000 cm3 nên ta có: 1000 = V = , hay .
Do đó, diện tích toàn phần của hình trụ là:
Ta cần tìm r sao cho S đạt giá trị nhỏ nhất. Ta có:

Bảng biến thiên:

Khi đó:
Vậy cần sản xuất các hộp đựng hình trụ có bán kính đáy và chiều cao .
Lời giải
a) Do đồ thị hàm số giao với trục hoành tại các điểm x = 20; x = 50, x = 100 nên phương trình f(x) = 0 có 3 nghiệm 20, 50, 100, từ đó ta có: y = a(x – 20)(x – 50)(x – 100).
Mặt khác, tại điểm x = 0 ta có y = 50, suy ra: 50 = a(0 – 20)(0 – 50 )(0 – 100) hay a = \[ - \frac{1}{{2000}}\].
Suy ra: \[y = - \frac{1}{{2000}}\left( {x - 20} \right)\left( {x - 50} \right)\left( {x - 100} \right) = - \frac{1}{{2000}}{x^3} + \frac{{17}}{{200}}{x^2} - 4x + 50\].
b) Các điểm cần thìm chính là các điểm cực trị của hàm số: \[y = f(x) = - \frac{1}{{2000}}{x^3} + \frac{{17}}{{200}}{x^2} - 4x + 50\]
\[y' = - \frac{3}{{2000}}{x^2} + 1\frac{{17}}{{200}}x - 4 = 0 \Leftrightarrow x = \frac{{100}}{3};x = 80\]
Ta có các điểm cực trị của hàm số f(x) là \[A\left( {\frac{{10}}{3}; - \frac{{200}}{{27}}} \right);B\left( {80;18} \right)\]
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.