Câu hỏi:

13/08/2025 10 Lưu

Tìm giá trị lôn nhất và giá trị nhỏ nhất (nếu có) của hàm số fx=x2+9x  trên khoảng 0;+ .

Trả lời: min0;+fx=6  tại x=3  và hàm số fx   không có giá trị lớn nhất.

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Xét hàm số fx=x2+9x vơi x0;+ .

Ta có: f'x=x2-9x2 . Khi đó, f'x=0x=3  (do x>0  ).

Ngoài ra limx0+xfx=+,limx0+fx=+ .

Bảng biến thiên của hàm số như sau:

(Trả lời ngăn) 	Tìm giá trị lôn nhất và giá trị nhỏ nhất (nếu có) của hàm số f(x)=(x^2+9)/x trên khoảng (0;+∞). Trả lời: min_((0;+∞)) f(x)=6 tại x=3 và hàm số f(x) không có giá trị lớn nhất. (ảnh 1)

Căn cứ bảng biến thiên, ta có: min0;+fx=6  tại x=3  và hàm số  không có giá trị lớn nhất.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Ta có \(v = s' =  - 6{t^2} + 48t + 9\).

Theo đề, ta cần tìm vận tốc lớn nhất trong 10 giây đầu tiên nên bài toán trở thành tìm GTLN của hàm số \(v\left( t \right) =  - 6{t^2} + 48t + 9\) trên đoạn \(\left[ {0\,;\,10} \right]\).

Khi đó \(v'\left( t \right) =  - 12t + 48\), \(v'\left( t \right) = 0 \Leftrightarrow t = 4 \in \left[ {0\,;\,10} \right]\).

Ta có \(v\left( 0 \right) = 9;\,\,v\left( 4 \right) = 105;\,\,v\left( {10} \right) =  - 111\). Suy ra \[{v_{m\,ax}} = 105\] \(\left( {m/s} \right)\).

Vậy vận tốc lớn nhất của vật đạt được trong khoảng 10 giây đầu tiên là 105 \(\left( {m/s} \right)\).

Lời giải

(Trả lời ngắn) Câu 32.	Ông \(A\) dự định sử dụng hết \(6,7{\mkern 1mu} {m^2}\) kính để làm một bể cá bằng kính có dạng hình hộp chữ nhật không nắp, chiều dài gấp đôi chiều rộng. Bể cá có dung tích lớn nhất bằng bao nhiêu? Trả lời:………………………………. (ảnh 1)

Hình hộp chữ nhật không nắp lần lượt có chiều rộng, dài, cao là \[x,y,z\], biết \(y = 2x\)

Diện tích không nắp \(S = xy + 2xz + 2yz = 2{x^2} + 6xz = 6,7{\mkern 1mu} {m^2}\) và thể tích \[V = xyz = 2{x^2}z\]

\(S = 2{x^2} + 3xz + 3xz \ge 3\sqrt[3]{{18{x^4}{z^2}}} = 3\sqrt[3]{{\frac{{9{V^2}}}{2}}} \Leftrightarrow {\left( {\frac{S}{3}} \right)^3} \ge \frac{{9{V^2}}}{2} \Leftrightarrow V \le \frac{1}{3}\sqrt {2{{\left( {\frac{S}{3}} \right)}^3}} \)

Suy ra: \(\max V = \frac{1}{3}\sqrt {2{{\left( {\frac{S}{3}} \right)}^3}}  \approx 1,57{m^3}\);

khi \(2{x^2} = 3xz \Leftrightarrow z = \frac{2}{3}x\)Û\(S = 2{x^2} + 6x\left( {\frac{2}{3}x} \right) = 6{x^2} = 6,7{m^2}\)Û \(x \approx 1.06\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP