Người ta giăng lưới để nuôi riêng một loại cá trên một góc hồ. Biết rằng lưới được giăng theo một đường thẳng từ một vị trí trên bờ ngang đến một vị trí trên bờ dọc và phải đi qua một cái cọc đã cắm sẵn ở vị trí \(A\). Hỏi diện tích nhỏ nhất có thể giăng là bao nhiêu, biết rằng khoảng cách từ cọc đến bờ ngang là \(5\,m\) và khoảng cách từ cọc đến bờ dọc là \(12\,m\).
Trả lời: \(120{m^2}\).
Người ta giăng lưới để nuôi riêng một loại cá trên một góc hồ. Biết rằng lưới được giăng theo một đường thẳng từ một vị trí trên bờ ngang đến một vị trí trên bờ dọc và phải đi qua một cái cọc đã cắm sẵn ở vị trí \(A\). Hỏi diện tích nhỏ nhất có thể giăng là bao nhiêu, biết rằng khoảng cách từ cọc đến bờ ngang là \(5\,m\) và khoảng cách từ cọc đến bờ dọc là \(12\,m\).

Quảng cáo
Trả lời:

Gọi \(H,\,K\) là hình chiếu của \(A\) trên bờ dọc và bờ ngang. Đặt \(BH = x\left( {x > 0} \right)\).
Khi đó, \(\frac{{BH}}{{HD}} = \frac{{BA}}{{AC}} = \frac{{DK}}{{KC}} \Rightarrow KC = \frac{{HD.\,DK}}{{BH}} = \frac{{60}}{x}\).
Diện tích khu nuôi cá là:
\(S = \frac{1}{2}BD.\,DC = \frac{1}{2}\left( {x + 5} \right)\left( {\frac{{60}}{x} + 12} \right) = 6x + \frac{{150}}{x} + 60 \ge 2\sqrt {6x.\frac{{150}}{x}} + 60\)
\( \Rightarrow S \ge 120,\,S = 120\,\,khi\,\,x = 5\). Vậy diện tích nhỏ nhất có thể giăng là \(120{m^2}\).
Hot: 500+ Đề thi thử tốt nghiệp THPT các môn, ĐGNL các trường ĐH... file word có đáp án (2025). Tải ngay
- 250+ Công thức giải nhanh môn Toán 12 (chương trình mới) ( 18.000₫ )
- 20 đề thi tốt nghiệp môn Toán (có đáp án chi tiết) ( 38.500₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội, TP Hồ Chí Minh (2 cuốn) ( 150.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải

Hình hộp chữ nhật không nắp lần lượt có chiều rộng, dài, cao là \[x,y,z\], biết \(y = 2x\)
Diện tích không nắp \(S = xy + 2xz + 2yz = 2{x^2} + 6xz = 6,7{\mkern 1mu} {m^2}\) và thể tích \[V = xyz = 2{x^2}z\]
\(S = 2{x^2} + 3xz + 3xz \ge 3\sqrt[3]{{18{x^4}{z^2}}} = 3\sqrt[3]{{\frac{{9{V^2}}}{2}}} \Leftrightarrow {\left( {\frac{S}{3}} \right)^3} \ge \frac{{9{V^2}}}{2} \Leftrightarrow V \le \frac{1}{3}\sqrt {2{{\left( {\frac{S}{3}} \right)}^3}} \)
Suy ra: \(\max V = \frac{1}{3}\sqrt {2{{\left( {\frac{S}{3}} \right)}^3}} \approx 1,57{m^3}\);
khi \(2{x^2} = 3xz \Leftrightarrow z = \frac{2}{3}x\)Û\(S = 2{x^2} + 6x\left( {\frac{2}{3}x} \right) = 6{x^2} = 6,7{m^2}\)Û \(x \approx 1.06\).
Lời giải
Ta có \(v = s' = - 6{t^2} + 48t + 9\).
Theo đề, ta cần tìm vận tốc lớn nhất trong 10 giây đầu tiên nên bài toán trở thành tìm GTLN của hàm số \(v\left( t \right) = - 6{t^2} + 48t + 9\) trên đoạn \(\left[ {0\,;\,10} \right]\).
Khi đó \(v'\left( t \right) = - 12t + 48\), \(v'\left( t \right) = 0 \Leftrightarrow t = 4 \in \left[ {0\,;\,10} \right]\).
Ta có \(v\left( 0 \right) = 9;\,\,v\left( 4 \right) = 105;\,\,v\left( {10} \right) = - 111\). Suy ra \[{v_{m\,ax}} = 105\] \(\left( {m/s} \right)\).
Vậy vận tốc lớn nhất của vật đạt được trong khoảng 10 giây đầu tiên là 105 \(\left( {m/s} \right)\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.