Cho hàm số f(x) có đạo hàm f'(x) liên tục trên ℝ. Hàm f'(x) có đồ thị như hình vẽ

a) Hàm số f(x) có 3 điểm cực trị
Cho hàm số f(x) có đạo hàm f'(x) liên tục trên ℝ. Hàm f'(x) có đồ thị như hình vẽ

Quảng cáo
Trả lời:
Từ đồ thị hàm số f'(x) ta có f'(x) = 0
với −1 < x1 < 1 < x2 < 2.
Bảng biến thiên

a) Dựa vào bảng biến thiên, ta có hàm số có 3 điểm cực trị.
Đúng
Câu hỏi cùng đoạn
Câu 2:
b) Hàm số f(x) đồng biến trên khoảng (−∞; −1).
b) Hàm số f(x) đồng biến trên khoảng (−∞; −1).
Từ đồ thị hàm số f'(x) ta có f'(x) = 0
với −1 < x1 < 1 < x2 < 2.
Bảng biến thiên

b) Hàm số y = f(x) nghịch biến trên (−∞; x1) nên hàm số y = f(x) nghịch biến trên (−∞; −1).
Sai
Câu 3:
c) Hàm số f(x) đạt cực đại tại x = 0.
c) Hàm số f(x) đạt cực đại tại x = 0.
Từ đồ thị hàm số f'(x) ta có f'(x) = 0
với −1 < x1 < 1 < x2 < 2.
Bảng biến thiên

c) Qua x = 0 đạo hàm f'(x) không đổi dấu nên x = 0 không là điểm cực trị.
=> Sai
Câu 4:
d) f(0) < f(1)
Từ đồ thị hàm số f'(x) ta có f'(x) = 0
với −1 < x1 < 1 < x2 < 2.
Bảng biến thiên

d) Hàm số y = f(x) đồng biến trên khoảng (x1; 1) mà x1 < 0 < 1 Þ f(0) < f(1).
=> Đúng
Hot: 1000+ Đề thi giữa kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- 250+ Công thức giải nhanh môn Toán 12 (chương trình mới) ( 18.000₫ )
- 20 Bộ đề, Tổng ôn, sổ tay môn Toán (có đáp án chi tiết) ( 55.000₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Tổng ôn lớp 12 môn Toán, Lí, Hóa, Văn, Anh, Sinh Sử, Địa, KTPL (Form 2025) ( 36.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Do hàm số y = f(x) xác định trên ℝ nên hàm số y = g(x) cũng xác định trên ℝ.
Ta có g'(x) =f'(x) – 1; g'(x) = 0 khi f'(x) = 1.
Số nghiệm của phương trình g'(x) = 0 là số giao điểm của đồ thị hàm số y = f'(x) và đường thẳng y = 1.

Dựa vào đồ thị hàm số ta thấy phương trình f'(x) = 1 hay g'(x) = 0 có 4 nghiệm phân biệt.
Gọi 4 nghiệm đó theo thứ tự từ bé đến lớn là a; b; c; d.
Ta có bảng xét dấu g'(x) như sau:

Vậy hàm số g(x) = f(x) – x có 4 điểm cực trị.
Trả lời: 4.
Lời giải
Ta có y' = 3ax2 + 2bx + c.
Theo đề ta có hệ 

.
Do đó
.
Trả lời: 32.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 5
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 7
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.




