Câu hỏi:

30/09/2025 55 Lưu

Cho hàm số \(y = f\left( x \right)\) có bảng biến thiên như sau
Mệnh đề nào sau đây là đúng? (ảnh 1)
Mệnh đề nào sau đây là đúng?

A. Đồ thị hàm số có tiệm cận đứng là đường thẳng \(x = 1\) và tiệm cận ngang là đường thẳng \(y = 2\)
B. Đồ thị hàm số không có đường tiệm cận.
C. Đồ thị hàm số chỉ có một đường tiệm cận.
D. Đồ thị hàm số có tiệm cận ngang là đường thẳng \(x = 1\) và tiệm cận đứng là đường thẳng \(y = 2\).

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Tập xác định :\(D = \mathbb{R}\backslash \left\{ 1 \right\}\).

Ta có \[\mathop {\lim }\limits_{x \to {1^ + }} \,y =  + \infty ,\,\mathop {\lim }\limits_{x \to {1^ - }} \,y =  - \infty \]; \[\mathop {\lim }\limits_{x \to 1 - \infty } \,y = 2,\,\mathop {\lim }\limits_{x \to  + \infty } \,y = 2\]

Tiệm cận đứng của đồ thị hàm số là đường thẳng \(x = 1\) và tiệm cận ngang của đồ thị hàm số là đường thẳng \(y = 2\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

A. \(8\).                       
B. \(16\).
C. \(4\).                           
D. \(12\).

Lời giải

Ta có \(y = \frac{{{x^2} + 4x + 16}}{x} = x + 4 + \frac{{16}}{x}\).

\[\mathop {\lim }\limits_{x \to  + \infty } \left[ {y - \left( {x + 4} \right)} \right] = \mathop {\lim }\limits_{x \to  + \infty } \left( {\frac{{16}}{x}} \right) = 0,\,\,\mathop {\lim }\limits_{x \to  - \infty } \left[ {y - \left( {x + 4} \right)} \right] = \mathop {\lim }\limits_{x \to  - \infty } \left( {\frac{{16}}{x}} \right) = 0\]

Đồ thị hàm số có đường tiệm cận xiên: \(y = x + 4\).

Tọa độ giao điểm của đường tiệm cận xiên với hai trục tọa độ là : \(A\left( {0;\,4} \right),\,B\left( { - 4;\,0} \right)\).

Diện tích tam giác \(OAB\)là \(S = \frac{1}{2}.OA.OB = \frac{1}{2}4.4 = 8\).

Lời giải

Gọi \(x\,\)là độ dài đáy nhỏ của hình thang \(\left( {x > 0} \right)\). Ta có :

Đáy lớn là \(2x\,\).

Chiều cao của hình thang là \(h = \frac{{2S}}{{x + 2x}}\, = \frac{{16}}{x}\).

Độ dài cạnh còn lại của hình thang là \[\sqrt {{x^2} + {{\left( {\frac{{16}}{x}} \right)}^2}} \, = \sqrt {{x^2} + \frac{{256}}{{{x^2}}}} \].

Khi đó \[P\left( x \right) = x + \frac{{16}}{x} + 2x + \sqrt {{x^2} + \frac{{256}}{{{x^2}}}}  = 3x + \sqrt {{x^2} + \frac{{256}}{{{x^2}}}}  + \frac{{16}}{x}\]  (tập xác định \(D = \left( {0;\, + \infty } \right)\)).

Do \(\mathop {\lim }\limits_{x \to  + \infty } P\left( x \right) = \mathop {\lim }\limits_{x \to  + \infty } \left[ {3x + \sqrt {{x^2} + \frac{{256}}{{{x^2}}}}  + \frac{{16}}{x}} \right] = \mathop {\lim }\limits_{x \to  + \infty } x\left[ {3 + \sqrt {1 + \frac{{256}}{{{x^4}}}}  + \frac{{16}}{{{x^2}}}} \right] =  + \infty \) nên đồ thị hàm số không có tiệm cận ngang.

+ \(\mathop {\lim }\limits_{x \to {0^ + }} P\left( x \right) = \mathop {\lim }\limits_{x \to {0^ + }} \frac{1}{x}\left[ {3{x^2} + \sqrt {{x^4} + 256}  + 16} \right] =  + \infty \) nên đồ thị hàm số có một tiệm cận đứng là trục \(Oy\)

+\(\mathop {\lim }\limits_{x \to  + \infty } \left( {P\left( x \right) - 4x} \right) = \mathop {\lim }\limits_{x \to  + \infty } \left[ {\sqrt {{x^2} + \frac{{256}}{{{x^2}}}}  - x + \frac{{16}}{x}} \right] = \mathop {\lim }\limits_{x \to  + \infty } \left[ {\frac{{256}}{{{x^2}\sqrt {{x^2} + \frac{{256}}{{{x^2}}}}  + x}} + \frac{{16}}{{{x^2}}}} \right] = 0\).

Khi đó đồ thị hàm số có 1 tiệm cận xiên \[y = 4x\].

Vậy đồ thị hàm số có 2 tiệm cận.

Câu 5

A. \(y = \frac{x}{{1 + \sqrt x }}\).                  
B. \(y = {x^3} - 3x\).                          
C. \(y = {\log _2}x\).  
D. \(y = x + \sqrt {{x^2} + 4} \).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP