Cho hàm số \(f(x)\) có bảng biến thiên như sau
Tổng số tiệm cận ngang và tiệm cận đứng của đồ thị hàm số đã cho là

Tổng số tiệm cận ngang và tiệm cận đứng của đồ thị hàm số đã cho là
Quảng cáo
Trả lời:

Dựa vào BBT ta có \(\mathop {\lim }\limits_{x \to - \infty } f(x) = 0,\,\)\(\mathop {\lim }\limits_{x \to + \infty } f(x) = 5,\,\)\(\mathop {\lim }\limits_{x \to {1^ - }} f(x) = - \infty \) suy ra đồ thị hàm số có 2 tiệm cận ngang và 1 tiệm cận đứng nên tổng số có 3 đường tiệm cận.
Hot: Danh sách các trường đã công bố điểm chuẩn Đại học 2025 (mới nhất) (2025). Xem ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Nhận xét: Dựa vào bảng biến thiên ta thấy \(f\left( x \right) \ge 1\).
Đồ thị hàm số \(y = \frac{{f\left( x \right)}}{{f\left( x \right) - m + 2}}\) có hai đường tiệm cận ngang có phương trình là \(y = \frac{5}{{7 - m}}\) và \(y = \frac{2}{{4 - m}}\).
Xét phương trình \(f\left( x \right) - m + 2 = 0 \Leftrightarrow f\left( x \right) = m - 2\,\,\left( * \right)\)
Để đồ thị hàm số có 4 đường tiệm cận thì \(\left( * \right)\) có hai nghiệm phân biệt suy ra
\(\left[ \begin{array}{l}1 < m - 2 < 2\\m - 2 = 3\\m - 2 \ge 5\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}3 < m < 4\\m = 5\\m \ge 7\end{array} \right.\).
Vì \(m \in \mathbb{Z},m \in \left[ {0\,;\,10} \right] \Rightarrow m \in \left\{ {5\,;\,7\,;\,8\,;\,9\,;\,10} \right\}\).
Đáp án: 5
Lời giải
Đáp án: \( - 9\).
Điều kiện: \(\left\{ \begin{array}{l}x \le 1\\{x^2} + 4x + m \ne 0\end{array} \right.\).
Ta có: là tiệm cận ngang của đồ thị hàm số.
Đồ thị hàm số có \(3\) đường tiệm cận \( \Leftrightarrow \) Đồ thị hàm số có \(2\) đường tiệm cận đứng \( \Leftrightarrow \) Phương trình \({x^2} + 4x + m = 0\) có 2 nghiệm phân biệt thuộc \(\left( { - \infty ;1} \right]\).
Ta có: \({x^2} + 4x + m = 0\)\( \Leftrightarrow {x^2} + 4x = - m\).
Bảng biến thiên của hàm số \(y = g\left( x \right) = {x^2} + 4x\):
Phương trình \({x^2} + 4x + m = 0\) có 2 nghiệm phân biệt thuộc \(\left( { - \infty ;1} \right]\) \( \Leftrightarrow - 5 \le m < 4\).
\( \Rightarrow \)\(S = \left\{ { - 5\,;\, - 4\,;\, - 3\,;\, - 2\,;\, - 1\,;\,0\,;\,1\,;\,2\,;\,3\,} \right\}\).
Vậy tổng giá trị các phần tử của tập \(S\) bằng \( - 9\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 5
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.