Anh B chế tạo một bể cá có dạng khối hình hộp chữ nhật không nắp có thể tích \(0,096\,{{\rm{m}}^3}\), chiều cao \(h = 0,6\,{\rm{m}}\), chiều rộng \(x\), chiều dài \(y\), với \(x > 0,\,y > 0\). Anh B dùng loại kính để làm các mặt bên có giá \(70.000\) đồng/\({{\rm{m}}^2}\) và loại kính để làm mặt đáy có giá \(100.000\) đồng/\({{\rm{m}}^2}\). Mọi chi phí khác xem như không đáng kể. Khi đó
a) Hàm số biểu thị \(y\) theo \(x\) là \(y = \frac{{0,16}}{x}\).
b) Chi phí mua kính để làm đáy bể là \(11200\) đồng.
c) Biểu thức tính chi phí làm các mặt xung quanh là \({C_{{\rm{xq}}}} = 84000.\left( {x + \frac{{0,16}}{x}} \right)\).
d) Chi phí làm bể cá thấp nhất là \(100000\) đồng.
Anh B chế tạo một bể cá có dạng khối hình hộp chữ nhật không nắp có thể tích \(0,096\,{{\rm{m}}^3}\), chiều cao \(h = 0,6\,{\rm{m}}\), chiều rộng \(x\), chiều dài \(y\), với \(x > 0,\,y > 0\). Anh B dùng loại kính để làm các mặt bên có giá \(70.000\) đồng/\({{\rm{m}}^2}\) và loại kính để làm mặt đáy có giá \(100.000\) đồng/\({{\rm{m}}^2}\). Mọi chi phí khác xem như không đáng kể. Khi đó
a) Hàm số biểu thị \(y\) theo \(x\) là \(y = \frac{{0,16}}{x}\).
b) Chi phí mua kính để làm đáy bể là \(11200\) đồng.
c) Biểu thức tính chi phí làm các mặt xung quanh là \({C_{{\rm{xq}}}} = 84000.\left( {x + \frac{{0,16}}{x}} \right)\).
d) Chi phí làm bể cá thấp nhất là \(100000\) đồng.
Quảng cáo
Trả lời:

a) Đúng |
b) Sai |
c) Đúng |
d) Sai |
a) Đúng.
Thể tích khối hộp hình chữ nhật: \(V = xyh = 0,6xy = 0,096 \Rightarrow y = \frac{{0,16}}{x}\)
Vậy \(y = \frac{{0,16}}{x}\)
b) Sai.
Diện tích đáy bể là \({S_{\rm{d}}} = xy = 0,16\,{{\rm{m}}^2}\).
Chi phí mua kính để làm đáy bể là \({C_{\rm{d}}} = 10000.{S_{\rm{d}}} = 16000\) đồng
c) Đúng.
Diện tích các mặt xung quanh: \({S_{{\rm{xq}}}} = 2\left( {0,6x + 0,6y} \right) = 1,2.\left( {x + \frac{{0,16}}{x}} \right)\)
Biểu thức tính chi phí làm các mặt xung quanh là \({C_{{\rm{xq}}}} = 84000.\left( {x + \frac{{0,16}}{x}} \right)\).
d) Sai.
Chi phí làm bể cá: \(C\left( x \right) = {C_{{\rm{xq}}}} + {C_{\rm{d}}} = 84000.\left( {x + \frac{{0,16}}{x}} \right) + 16000,\,x > 0\)
Chi phí làm bể cá thấp nhất khi và chỉ khi \(\left( {x + \frac{{0,16}}{x}} \right)\) đạt giá trị nhỏ nhất
Xét hàm số \(f\left( x \right) = x + \frac{{0,16}}{x} = \frac{{{x^2} + 0,16}}{x},\,x > 0\)
Bảng biến thiên:
Suy ra: \(\mathop {{\rm{M}}{\mathop{\rm in}\nolimits} f\left( x \right)}\limits_{x \in \left( {0\,;\, + \infty } \right)} = f\left( {\frac{2}{5}} \right) = \frac{4}{5}\)
Vậy chi phí thấp nhất để làm bể cá là: \(C = \frac{{84000.4}}{5} + 16000 = 83200\) đồng.
Hot: Danh sách các trường đã công bố điểm chuẩn Đại học 2025 (mới nhất) (2025). Xem ngay
- 250+ Công thức giải nhanh môn Toán 12 (chương trình mới) ( 18.000₫ )
- 500 Bài tập tổng ôn môn Toán (Form 2025) ( 38.500₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Bộ đề thi tốt nghiệp 2025 các môn Toán, Lí, Hóa, Văn, Anh, Sinh, Sử, Địa, KTPL (có đáp án chi tiết) ( 36.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Đáp án: \(4.\)
Xét hàm số \[y = \frac{{{x^2} - 2x + 5}}{{x - 1}}\] trên khoảng \[\left( {1;\infty } \right)\].
Ta có \[\begin{array}{l}y' = \frac{{{x^2} - 2x - 3}}{{{{\left( {x - 1} \right)}^2}}} \Rightarrow y' = 0 \Leftrightarrow \left[ \begin{array}{l}x = - 1\\x = 3\end{array} \right.\\\end{array}\]
Bảng biến thiên
Suy ra \[m = \mathop {{\rm{min}}}\limits_{\left( {1; + \infty } \right)} y = 4\] khi \(x = 3\).
Lời giải
Điều kiện \(x \ne 1\). Phương trình hoành độ giao điểm của \(d\) và \(\left( C \right)\):
\[\begin{array}{l}\frac{{ - 2x + 1}}{{x - 1}} = mx + 1 \Leftrightarrow \left( {mx + 1} \right)\left( {x - 1} \right) = - 2x + 1\\ \Leftrightarrow m{x^2} + \left( {3 - m} \right)x - 2 = 0\end{array}\]
Đặt \[g\left( x \right) = m{x^2} + \left( {3 - m} \right)x - 2 = 0\].
\(d\) cắt \(\left( C \right)\) tại hai điểm phân biệt khi phương trình \(g\left( x \right) = 0\) có hai nghiệm phân biệt khác 1.
\(\left\{ \begin{array}{l}a \ne 0\\\Delta > 0\\g\left( 1 \right) \ne 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}m \ne 0\\{\left( {3 - m} \right)^2} + 8m > 0\\m + 3 - m - 2 \ne 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}m \ne 0\\{m^2} + 2m + 9 > 0\end{array} \right. \Leftrightarrow m \ne 0\).
Vì \(\left\{ \begin{array}{l}m \in Z\\m \in \left[ { - 5;5} \right]\end{array} \right.\) nên \(m \in \left\{ { - 5; - 4; - 3; - 2; - 1;1;2;3;4;5} \right\}\).
Vậy có \(10\) giá trị.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 4
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.