Câu hỏi:

30/09/2025 182 Lưu

Trong phòng thí nghiệm người ta xác định được số lượng vi khuẩn được nuôi cấy tính theo công thức \[N\left( t \right) = 1000 + \frac{{100t}}{{100 + {t^2}}}\] (con vi khuẩn). Tính số lượng vi khuẩn lớn nhất kể từ khi nuôi cấy.

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Đáp án: 1005

Xét hàm số \[N\left( t \right) = 1000 + \frac{{100t}}{{100 + {t^2}}},\,\left( {t > 0} \right)\]

\[N'\left( t \right) = \frac{{100\left( {100 + {t^2}} \right) - 2t.100t}}{{{{\left( {100 + {t^2}} \right)}^2}}} = \frac{{100\left( {100 - {t^2}} \right)}}{{{{\left( {100 + {t^2}} \right)}^2}}}\]

\[N'\left( t \right) = 0 \Leftrightarrow 100 - {t^2} = 0 \Leftrightarrow \left[ \begin{array}{l}t = 10\,\,\left( N \right)\\t =  - 10\,\left( L \right)\end{array} \right.\].

Ta có bảng biến thiên

Tính số lượng vi khuẩn lớn nhất kể từ khi nuôi cấy. (ảnh 1)

Vậy số lượng vi khuẩn lớn nhất nuôi cấy được là 1005 con.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Câu 2

Giải chi tiết( giải thích)

a) Đ

Từ bảng biến thiên suy ra đồ thị hàm số có đường tiệm cận đứng là \(x = 2\).

b) s

Từ bảng biến thiên suy ra đồ thị hàm số có đường tiệm cận ngang là \(y = 1\).

c) s

Từ bảng biến thiên suy ra trên khoảng\(\left( { - \infty ;\,2} \right)\) đồ thị hàm số luôn nằm phía trên so với đường thẳng \(y = 1 \Rightarrow f\left( x \right) > 1\,\,\forall \,\,x \in \left( { - \infty ;\,2} \right) \Rightarrow f\left( { - 5} \right) > 1 > 0\).

d) s

Từ BBT ta có:

Đường tiệm cận ngang là \(y = 1 \Rightarrow \frac{a}{b} = 1 \Leftrightarrow a = b\).

Đường tiệm cận đứng là \(x = 2 \Rightarrow \frac{{ - c}}{b} = 2 \Leftrightarrow c = - 2b = - 2a\).

Mặt khác:

\(\begin{array}{l}f'\left( x \right) = \frac{{ac - 3b}}{{{{\left( {bx + c} \right)}^2}}} > 0\,\,\,\forall \,\,\,x \ne 2\\ \Rightarrow ac - 3b > 0 \Leftrightarrow - 2{a^2} - 3a > 0 \Rightarrow \frac{{ - 3}}{2} < a < 0 \Rightarrow b < 0,\,\,c > 0\end{array}\)

Vậy trong các số \(a,b\)\(c\) có hai số âm.

Lời giải

Đáp án: \(16.\)

Gọi số máy móc công ty sử dụng để sản xuất là \(x\left( {x \in {\rm N},\,\,x > 0} \right)\).

Thời gian cần để sản xuất hết \(8000\) quả bóng là: \(\frac{{8000}}{{30x}}\).

Tổng chi phí để sản xuất là: \(P\left( x \right) = 200x + \frac{{8000}}{{30x}}.192 = 200x + \frac{{51200}}{x}\)

Ta có: \(P'\left( x \right) = 200 - \frac{{51200}}{{{x^2}}} = 0 \Leftrightarrow {x^2} = 256 \Leftrightarrow \left[ \begin{array}{l}x = 16\\x =  - 16\left( L \right)\end{array} \right.\).

Công ty cần sử dụng bao nhiêu máy móc để chi phí hoạt động đạt mức thấp nhất? (ảnh 1)

Vậy công ty nên sử dụng \(16\) máy để chi phí hoạt động là thấp nhất.

Câu 3

A. \(y = \frac{{{x^2} + 2x - 2}}{{x - 1}}\).      
B. \(y = \frac{{{x^2} + 2x - 2}}{{x + 1}}\).                 
C. \(y = \frac{{{x^2} + 2x + 2}}{{x - 1}}\).                 
D. \(y = \frac{{{x^2} + 2x + 2}}{{x + 1}}\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP