Một công ty chuyên sản xuất dụng cụ thể thao nhận được đơn đặt hàng sản xuất \(8000\) quả bóng rổ. Công ty có một số máy móc, mỗi máy có khả năng sản xuất \(30\) bóng rổ trong một giờ. Chi phí thiết lập mỗi máy là\(200\) nghìn đồng. Sau khi thiết lập, quá trình sản xuất sẽ diễn ra hoàn toàn tự động và chỉ cần có người giám sát. Chi phí trả cho người giám sát là \(192\) nghìn đồng mỗi giờ. Công ty cần sử dụng bao nhiêu máy móc để chi phí hoạt động đạt mức thấp nhất?
Quảng cáo
Trả lời:

Đáp án: \(16.\)
Gọi số máy móc công ty sử dụng để sản xuất là \(x\left( {x \in {\rm N},\,\,x > 0} \right)\).
Thời gian cần để sản xuất hết \(8000\) quả bóng là: \(\frac{{8000}}{{30x}}\).
Tổng chi phí để sản xuất là: \(P\left( x \right) = 200x + \frac{{8000}}{{30x}}.192 = 200x + \frac{{51200}}{x}\)
Ta có: \(P'\left( x \right) = 200 - \frac{{51200}}{{{x^2}}} = 0 \Leftrightarrow {x^2} = 256 \Leftrightarrow \left[ \begin{array}{l}x = 16\\x = - 16\left( L \right)\end{array} \right.\).
Vậy công ty nên sử dụng \(16\) máy để chi phí hoạt động là thấp nhất.
Hot: Danh sách các trường đã công bố điểm chuẩn Đại học 2025 (mới nhất) (2025). Xem ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Đáp án: 1005
Xét hàm số \[N\left( t \right) = 1000 + \frac{{100t}}{{100 + {t^2}}},\,\left( {t > 0} \right)\]
\[N'\left( t \right) = \frac{{100\left( {100 + {t^2}} \right) - 2t.100t}}{{{{\left( {100 + {t^2}} \right)}^2}}} = \frac{{100\left( {100 - {t^2}} \right)}}{{{{\left( {100 + {t^2}} \right)}^2}}}\]
\[N'\left( t \right) = 0 \Leftrightarrow 100 - {t^2} = 0 \Leftrightarrow \left[ \begin{array}{l}t = 10\,\,\left( N \right)\\t = - 10\,\left( L \right)\end{array} \right.\].
Ta có bảng biến thiên
Vậy số lượng vi khuẩn lớn nhất nuôi cấy được là 1005 con.
Lời giải
Câu 2 |
Giải chi tiết( giải thích) |
a) Đ |
Từ bảng biến thiên suy ra đồ thị hàm số có đường tiệm cận đứng là \(x = 2\). |
b) s |
Từ bảng biến thiên suy ra đồ thị hàm số có đường tiệm cận ngang là \(y = 1\). |
c) s |
Từ bảng biến thiên suy ra trên khoảng\(\left( { - \infty ;\,2} \right)\) đồ thị hàm số luôn nằm phía trên so với đường thẳng \(y = 1 \Rightarrow f\left( x \right) > 1\,\,\forall \,\,x \in \left( { - \infty ;\,2} \right) \Rightarrow f\left( { - 5} \right) > 1 > 0\). |
d) s |
Từ BBT ta có: Đường tiệm cận ngang là \(y = 1 \Rightarrow \frac{a}{b} = 1 \Leftrightarrow a = b\). Đường tiệm cận đứng là \(x = 2 \Rightarrow \frac{{ - c}}{b} = 2 \Leftrightarrow c = - 2b = - 2a\). Mặt khác: \(\begin{array}{l}f'\left( x \right) = \frac{{ac - 3b}}{{{{\left( {bx + c} \right)}^2}}} > 0\,\,\,\forall \,\,\,x \ne 2\\ \Rightarrow ac - 3b > 0 \Leftrightarrow - 2{a^2} - 3a > 0 \Rightarrow \frac{{ - 3}}{2} < a < 0 \Rightarrow b < 0,\,\,c > 0\end{array}\) Vậy trong các số \(a,b\) và \(c\) có hai số âm. |
Câu 3
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.