Câu hỏi:

30/09/2025 8 Lưu

Một công ty chuyên sản xuất dụng cụ thể thao nhận được đơn đặt hàng sản xuất \(8000\) quả bóng rổ. Công ty có một số máy móc, mỗi máy có khả năng sản xuất \(30\) bóng rổ trong một giờ. Chi phí thiết lập mỗi máy là\(200\) nghìn đồng. Sau khi thiết lập, quá trình sản xuất sẽ diễn ra hoàn toàn tự động và chỉ cần có người giám sát. Chi phí trả cho người giám sát là \(192\) nghìn đồng mỗi giờ. Công ty cần sử dụng bao nhiêu máy móc để chi phí hoạt động đạt mức thấp nhất?

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Đáp án: \(16.\)

Gọi số máy móc công ty sử dụng để sản xuất là \(x\left( {x \in {\rm N},\,\,x > 0} \right)\).

Thời gian cần để sản xuất hết \(8000\) quả bóng là: \(\frac{{8000}}{{30x}}\).

Tổng chi phí để sản xuất là: \(P\left( x \right) = 200x + \frac{{8000}}{{30x}}.192 = 200x + \frac{{51200}}{x}\)

Ta có: \(P'\left( x \right) = 200 - \frac{{51200}}{{{x^2}}} = 0 \Leftrightarrow {x^2} = 256 \Leftrightarrow \left[ \begin{array}{l}x = 16\\x =  - 16\left( L \right)\end{array} \right.\).

Công ty cần sử dụng bao nhiêu máy móc để chi phí hoạt động đạt mức thấp nhất? (ảnh 1)

Vậy công ty nên sử dụng \(16\) máy để chi phí hoạt động là thấp nhất.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Đáp án: \(4.\)

Xét hàm số \[y = \frac{{{x^2} - 2x + 5}}{{x - 1}}\] trên khoảng \[\left( {1;\infty } \right)\].

Ta có \[\begin{array}{l}y' = \frac{{{x^2} - 2x - 3}}{{{{\left( {x - 1} \right)}^2}}} \Rightarrow y' = 0 \Leftrightarrow \left[ \begin{array}{l}x =  - 1\\x = 3\end{array} \right.\\\end{array}\] 

Bảng biến thiên

Gọi \[m\] là giá trị nhỏ nhất của hàm số \[y = \frac{{{x^2} - 2x + 5}}{{x - 1}}\] trên khoảng \[\left( {1;\infty } \right)\]. Giá trị của \[m\] bằng bao nhiêu? (ảnh 1)

Suy ra \[m = \mathop {{\rm{min}}}\limits_{\left( {1; + \infty } \right)} y = 4\] khi \(x = 3\).

Lời giải

Điều kiện \(x \ne 1\). Phương trình hoành độ giao điểm của \(d\) và \(\left( C \right)\):

\[\begin{array}{l}\frac{{ - 2x + 1}}{{x - 1}} = mx + 1 \Leftrightarrow \left( {mx + 1} \right)\left( {x - 1} \right) =  - 2x + 1\\ \Leftrightarrow m{x^2} + \left( {3 - m} \right)x - 2 = 0\end{array}\]

Đặt \[g\left( x \right) = m{x^2} + \left( {3 - m} \right)x - 2 = 0\].

\(d\) cắt \(\left( C \right)\) tại hai điểm phân biệt khi phương trình \(g\left( x \right) = 0\) có hai nghiệm phân biệt khác 1.

\(\left\{ \begin{array}{l}a \ne 0\\\Delta  > 0\\g\left( 1 \right) \ne 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}m \ne 0\\{\left( {3 - m} \right)^2} + 8m > 0\\m + 3 - m - 2 \ne 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}m \ne 0\\{m^2} + 2m + 9 > 0\end{array} \right. \Leftrightarrow m \ne 0\).

Vì \(\left\{ \begin{array}{l}m \in Z\\m \in \left[ { - 5;5} \right]\end{array} \right.\) nên \(m \in \left\{ { - 5; - 4; - 3; - 2; - 1;1;2;3;4;5} \right\}\).

Vậy có \(10\) giá trị.

Câu 4

A. \(y = \frac{{{x^2} + 2x - 2}}{{x - 1}}\).      
B. \(y = \frac{{{x^2} + 2x - 2}}{{x + 1}}\).                 
C. \(y = \frac{{{x^2} + 2x + 2}}{{x - 1}}\).                 
D. \(y = \frac{{{x^2} + 2x + 2}}{{x + 1}}\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP