Câu hỏi:

30/09/2025 448 Lưu

Đường tiệm cận đứng của đồ thị hàm số \(y = \frac{{15x - 6}}{{10x + 5}}\)

A. \(x = \frac{3}{2}\).                               
B. \(x = - \frac{6}{5}\).            
C. \(x = - \frac{1}{2}\).            
D. \(x = \frac{2}{5}\).

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Điều kiện xác định: \(x \ne  - \frac{1}{2}\).

Ta có \[\mathop {\lim }\limits_{x \to {{\left( { - \frac{1}{2}} \right)}^ + }} \frac{{15x - 6}}{{10x + 5}} =  - \infty \] và \[\mathop {\lim }\limits_{x \to {{\left( { - \frac{1}{2}} \right)}^ - }} \frac{{15x - 6}}{{10x + 5}} =  + \infty \] nên đồ thị hàm số có đường tiệm cận đứng là \(x =  - \frac{1}{2}\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

A. Hàm số đồng biến trên khoảng \[\left( {2; + \infty } \right)\].                     
B. Hàm số đồng biến trên khoảng \[\left( { - 2;2} \right)\].
C. Hàm số nghịch biến trên khoảng \[\left( { - \infty ; + \infty } \right)\].     
D. Hàm số đồng biến trên khoảng \[\left( { - \infty ; - 2} \right)\].

Lời giải

Do hàm số \[y = f\left( x \right)\] có đạo hàm \[f'\left( x \right) =  - {x^2} - 4 < 0\],\[\forall x \in \mathbb{R}\] nên hàm số nghịch biến trên khoảng \[\left( { - \infty ; + \infty } \right)\].

Lời giải

Đáp số: \( - 3\).

Ta có: \(y' = \frac{{1 + m}}{{{{\left( {x + 1} \right)}^2}}}\).

TH1: \(1 + m > 0 \Leftrightarrow m >  - 1\)

Khi đó: \(y' > 0\),\(\forall x \in \left[ {1;3} \right]\)\( \Rightarrow \) hàm số \(y = \frac{{x - m}}{{x + 1}}\) đồng biến trên đoạn \(\left[ {1;3} \right]\).

Suy ra: \(\mathop {\max }\limits_{\left[ {1;3} \right]} y = y\left( 3 \right) = \frac{{3 - m}}{4} = 2 \Leftrightarrow m =  - 5\) (loại).

TH2: \(1 + m < 0 \Leftrightarrow m <  - 1\)

Khi đó: \(y' < 0\),\(\forall x \in \left[ {1;3} \right]\)\( \Rightarrow \) hàm số \(y = \frac{{x - m}}{{x + 1}}\) nghịch biến trên đoạn \(\left[ {1;3} \right]\).

Suy ra: \(\mathop {\max }\limits_{\left[ {1;3} \right]} y = y\left( 1 \right) = \frac{{1 - m}}{2} = 2 \Leftrightarrow m =  - 3\) (thoả mãn).

Vậy \(m =  - 3\) là giá trị cần tìm.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

A. \(y = - x - 1\).       
B. \(y = x - 1\).        
C. \(y = - x + 1\).                          
D. \(y = x + 1\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP