Các mệnh đề sau là đúng hay sai?
a) Cho hàm số \(y = f\left( x \right)\) có bảng biến thiên như hình vẽ:

Hàm số đã cho nghịch biến trên khoảng \(\left( { - 4;0} \right)\).
b) Hàm số \(y = f\left( x \right) = \frac{{x - 1}}{{x + 1}}\) đồng biến trên \(\left( { - \infty \,;\, + \infty } \right)\).
c) Hàm số \(y = g\left( x \right) = \frac{{{x^2} - 1}}{x}\) không có cực trị.
d) Một doanh nghiệp mua một chiếc máy giá 5000 (USD) để sản xuất \(x\left( {kg} \right)\) sản phẩm loại A. Trong thực tế, mỗi kg sản phẩm được sản xuất ra cần phải có nguyên liệu với giá 4 (USD). Khi doanh nghiệp này sản xuất một số lượng rất lớn sản phẩm thì chi phí để sản xuất được mỗi kg sản phẩm giảm dần và đạt giá trị nhỏ nhất là 4,1 (USD).
Các mệnh đề sau là đúng hay sai?
a) Cho hàm số \(y = f\left( x \right)\) có bảng biến thiên như hình vẽ:
Hàm số đã cho nghịch biến trên khoảng \(\left( { - 4;0} \right)\).
b) Hàm số \(y = f\left( x \right) = \frac{{x - 1}}{{x + 1}}\) đồng biến trên \(\left( { - \infty \,;\, + \infty } \right)\).
c) Hàm số \(y = g\left( x \right) = \frac{{{x^2} - 1}}{x}\) không có cực trị.
d) Một doanh nghiệp mua một chiếc máy giá 5000 (USD) để sản xuất \(x\left( {kg} \right)\) sản phẩm loại A. Trong thực tế, mỗi kg sản phẩm được sản xuất ra cần phải có nguyên liệu với giá 4 (USD). Khi doanh nghiệp này sản xuất một số lượng rất lớn sản phẩm thì chi phí để sản xuất được mỗi kg sản phẩm giảm dần và đạt giá trị nhỏ nhất là 4,1 (USD).
Câu hỏi trong đề: Đề kiểm tra Bài tập cuối chương 1 (có lời giải) !!
Quảng cáo
Trả lời:

a) Sai.
Quan sát bảng biến thiên, ta thấy hàm số \(y = f\left( x \right)\) đồng biến trên \(\left( { - 4;0} \right)\).
b) Sai.
Điều kiện xác định: \(x \ne - 1\)
\(y' = f'\left( x \right) = \frac{2}{{{{\left( {x + 1} \right)}^2}}} > 0\) với \(\forall x \ne - 1\) nên hàm số \(y = f\left( x \right) = \frac{{x - 1}}{{x + 1}}\) luôn đồng biến trên các khoảng và .
c) Đúng.
Điều kiện xác định: \(x \ne 0\)
Ta có: \(g'\left( x \right) = \frac{{{x^2} + 1}}{{{x^2}}} > 0\forall x \ne 0\) nên \(g\left( x \right)\) đồng biến trên các khoảng xác định. Do đó hàm số \(y = g\left( x \right) = \frac{{{x^2} - 1}}{x}\) không có cực trị.
d) Sai.
Chi phí sản xuất \(x\)(kg) sản phẩm loại A là \(5000 + 4x\).
Chi phí sản xuất mỗi (kg) sản phẩm loại A là \(T\left( x \right) = \frac{{5000 + 4x}}{x}\).
TXĐ: \(D = \left( {0; + \infty } \right)\). \(T'\left( x \right) = \frac{{ - 5000}}{{{x^2}}} < 0\,\,\,\forall x \in D\).
Mặt khác với \(x = {10^5} \in D\), \(T\left( x \right) = 4,05 < 4,1\) nên 4,1 không phải là GTNN của \(T\left( x \right)\) trên \(D\)
Hot: Danh sách các trường đã công bố điểm chuẩn Đại học 2025 (mới nhất) (2025). Xem ngay
- 250+ Công thức giải nhanh môn Toán 12 (chương trình mới) ( 18.000₫ )
- 20 đề thi tốt nghiệp môn Toán (có đáp án chi tiết) ( 38.500₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội, TP Hồ Chí Minh (2 cuốn) ( 150.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1
Lời giải
Gọi \(F\left( n \right)\) là hàm cân nặng của \(n\) con cá sau vụ thu hoạch trên một đơn vị diện tích.
Ta có: \(F\left( n \right) = \left( {800 - 20n} \right).n = 800n - 20{n^2}\).
Để sau một vụ thu hoạch được nhiều cá nhất thì cân nặng của \(n\) con cá trên một đơn vị diện tích của mặt hồ là lớn nhất.
Bài toán trở thành tìm \(n \in {\mathbb{N}^*}\) sao cho \(F\left( n \right)\) đạt GTLN.
\(\begin{array}{l}F'\left( n \right) = 800 - 40n\\F'\left( n \right) = 0 \Leftrightarrow 800 - 40n = 0 \Leftrightarrow n = 20\end{array}\)
Ta có bảng biến thiên:
Vậy phải thả \[20\] con cá trên một đơn vị diện tích của mặt hồ để sau một vụ thu hoạch được nhiều cá nhất.
Câu 2
Lời giải
Từ đồ thị hàm số \(f\left( x \right)\) ta có \(\mathop {\max }\limits_{\left[ {0\,;\,3} \right]} f\left( x \right) = 4\) tại \(x = 2\).
Câu 3
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 4
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 5
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 6
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 7
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.