Phần 2: Trắc nghiệm đúng sai
Cho hàm số \(y = f\left( x \right)\) có đạo hàm trên \(\mathbb{R}\)và hàm số \(y = f'\left( x \right)\)là hàm số bậc ba có đồ thị là đường cong trong hình vẽ.
![Xét tính đúng hoặc sai của các mệnh đề sau: a) [Mức độ 1] Hàm số \(y = f\left( x \right)\) đồng biến trên khoảng \(\left( { - \infty ; - 2} \right)\). (ảnh 1)](https://video.vietjack.com/upload2/quiz_source1/2025/09/8-1759228942.png)
Xét tính đúng hoặc sai của các mệnh đề sau:
a) [Mức độ 1] Hàm số \(y = f\left( x \right)\) đồng biến trên khoảng \(\left( { - \infty ; - 2} \right)\).
b) [Mức độ 1] Hàm số \(y = f\left( x \right)\) có hai điểm cực trị.
c) [Mức độ 2] \(f'\left( 2 \right) = 4\).
d) [Mức độ 3] Hàm số \(g\left( x \right) = f\left( x \right) - \frac{1}{2}{x^2} + x + 2024\) đồng biến trên khoảng \(\left( { - \frac{5}{2}; - \frac{3}{2}} \right)\).
Phần 2: Trắc nghiệm đúng sai
Cho hàm số \(y = f\left( x \right)\) có đạo hàm trên \(\mathbb{R}\)và hàm số \(y = f'\left( x \right)\)là hàm số bậc ba có đồ thị là đường cong trong hình vẽ.
Xét tính đúng hoặc sai của các mệnh đề sau:
a) [Mức độ 1] Hàm số \(y = f\left( x \right)\) đồng biến trên khoảng \(\left( { - \infty ; - 2} \right)\).
b) [Mức độ 1] Hàm số \(y = f\left( x \right)\) có hai điểm cực trị.
c) [Mức độ 2] \(f'\left( 2 \right) = 4\).
d) [Mức độ 3] Hàm số \(g\left( x \right) = f\left( x \right) - \frac{1}{2}{x^2} + x + 2024\) đồng biến trên khoảng \(\left( { - \frac{5}{2}; - \frac{3}{2}} \right)\).
Câu hỏi trong đề: Đề kiểm tra Bài tập cuối chương 1 (có lời giải) !!
Quảng cáo
Trả lời:

a) Sai. Vì từ đồ thị của hàm số \(y = f'\left( x \right)\) ta thấy \(f'\left( x \right) \ge 0\) với \(\forall x \ge 1\) nên hàm số đồng biến trên khoảng \(\left( {1; + \infty } \right)\).
b) Sai. Vì từ đồ thị của hàm số \(y = f'\left( x \right)\) ta thấy \(f'\left( x \right)\) chỉ đổi dấu một lần qua \(x = 1\) nên hàm số có một điểm cực trị.
c) Sai. Vì:
Từ đồ thị ta có hàm số \(f'\left( x \right)\) có dạng: \(f'\left( x \right) = a{\left( {x + 2} \right)^2}\left( {x - 1} \right)\).
Đồ thị hàm số \(y = f'\left( x \right)\) đi qua \(\left( {0; - 4} \right)\) nên: \( - 4 = a{\left( {0 + 2} \right)^2}\left( {0 - 1} \right) \Leftrightarrow a = 1\).
Vậy \(f'\left( x \right) = {\left( {x + 2} \right)^2}\left( {x - 1} \right) \Rightarrow f'\left( 2 \right) = {\left( {2 + 2} \right)^2}\left( {2 - 1} \right) = 16\).
d) Đúng. Vì:
Ta có: \(g'\left( x \right) = f'\left( x \right) - x + 1 = 0 \Leftrightarrow f'\left( x \right) = x - 1\).
Vẽ đường thẳng \(y = x - 1\) trên cùng hệ trục tọa độ với đồ thị hàm số \(y = f'\left( x \right)\).
Khi đó: \(f'\left( x \right) = x - 1 \Leftrightarrow \left[ \begin{array}{l}x = - 3\\x = - 1\\x = 1\end{array} \right.\).
Bảng biến thiên của hàm số \(g\left( x \right)\).
Ta có hàm số \(g\left( x \right)\) đồng biến trên khoảng \(\left( { - 3; - 1} \right)\) nên \(g\left( x \right)\) đồng biến trên khoảng \(\left( { - \frac{5}{2}; - \frac{3}{2}} \right)\).
Hot: Danh sách các trường đã công bố điểm chuẩn Đại học 2025 (mới nhất) (2025). Xem ngay
- 250+ Công thức giải nhanh môn Toán 12 (chương trình mới) ( 18.000₫ )
- 20 đề thi tốt nghiệp môn Toán (có đáp án chi tiết) ( 38.500₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội, TP Hồ Chí Minh (2 cuốn) ( 150.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Đáp số: \(9\).
Ta có \[f\left( t \right) = - {t^3} + 45{t^2} + 600t \Rightarrow f'\left( t \right) = - 3{t^2} + 90t + 600\].
Tốc độ truyền bệnh lớn hơn 1200 nên \[f'\left( t \right) > 1200 \Leftrightarrow - 3{t^2} + 90t + 600 > 1200 \Leftrightarrow - 3{t^2} + 90t - 600 > 0 \Leftrightarrow 10 < t < 20\].
Vậy có 9 ngày tốc độ truyền bệnh lớn hơn 1200.
Lời giải
Lời giải
Đồ thị có tiệm cận đứng \(x = - 2\).
Suy ra \( - \frac{2}{c} = - 2 \Leftrightarrow c = 1\).
Đồ thị có tiệm cận xiên đi qua hai điểm: \(\left( {0;1} \right)\) và \(\left( { - 1;0} \right)\) nên có phương trình: \(\frac{x}{{ - 1}} + \frac{y}{1} = 1 \Leftrightarrow y = x + 1\).
Khi đó ta có:
\[\mathop {\lim }\limits_{x \to + \infty } \frac{{a{x^2} + bx + 1}}{{x\left( {x + 2} \right)}} = 1 \Leftrightarrow a = 1\]; \[\mathop {\lim }\limits_{x \to + \infty } \left( {\frac{{{x^2} + bx + 1}}{{x + 2}} - x} \right) = \mathop {\lim }\limits_{x \to + \infty } \frac{{\left( {b - 2} \right)x + 1}}{{x + 2}} = b - 2 = 1 \Leftrightarrow b = 3\].
Vậy: \(T = 2a + 3b - c = 2 + 9 - 1 = 10\). Chọn đáp án B.
Câu 3
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.