Trong một trò chơi, mỗi đội chơi được phát một tấm bìa hình chữ nhật kích thước 21 cm, 29,5 cm. Nhiệm vụ của mỗi đội là cắt ở bốn góc của tấm bìa này bốn hình vuông bằng nhau, rồi gập tấm bìa lại và dán keo để được một cái hộp không nắp có dạng hình hộp chữ nhật như hình vẽ.
Đội nào thiết kế được chiếc hộp có thể tích lớn nhất sẽ dành chiến thắng. Hãy xác định cạnh của hình vuông bị cắt để thu được hộp có thể tích lớn nhất. (Coi mép dán không đáng kể, kết quả làm tròn đến hàng phần trăm).
Câu hỏi trong đề: Đề kiểm tra Bài tập cuối chương 1 (có lời giải) !!
Quảng cáo
Trả lời:
Đáp số: \(4,03\;\;cm\).
Gọi cạnh của hình vuông bị cắt ở bốn góc là: \(x\).
Điều kiện: \(0 < 2x < 21 \Leftrightarrow 0 < x < 10,5\), đơn vị \(cm\).
Ta có kích thước của khối hộp chữ nhật là: \(x,{\kern 1pt} {\rm{ }}21 - 2x;\;29,{\rm{ }}5 - 2x\).
Thể tích của khối hộp là: \(V = \left( {21 - 2x} \right).\left( {29,5 - 2x} \right).x = 619,5x - 101{x^2} + 4{x^3} = f\left( x \right)\).
Thể tích khối hộp lớn nhất khi hàm số \(f\left( x \right)\) đạt giá trị lớn nhất.
\(f'\left( x \right) = 12{x^2} - 202x + 619,5 = 0 \Leftrightarrow \left[ \begin{array}{l}{x_2} \approx 12,80\\{x_1} \approx 4,03\end{array} \right.\).
Ta có bảng biến thiên:

Suy ra \[\mathop {\max }\limits_{\left( {0;10,5} \right)} f\left( x \right) = f\left( {{x_1}} \right)\].
Vậy cạnh của hình vuông xấp xỉ \(4,03\;cm\).
Hot: 1000+ Đề thi cuối kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Lời giải
Đồ thị có tiệm cận đứng \(x = - 2\).
Suy ra \( - \frac{2}{c} = - 2 \Leftrightarrow c = 1\).
Đồ thị có tiệm cận xiên đi qua hai điểm: \(\left( {0;1} \right)\) và \(\left( { - 1;0} \right)\) nên có phương trình: \(\frac{x}{{ - 1}} + \frac{y}{1} = 1 \Leftrightarrow y = x + 1\).
Khi đó ta có:
\[\mathop {\lim }\limits_{x \to + \infty } \frac{{a{x^2} + bx + 1}}{{x\left( {x + 2} \right)}} = 1 \Leftrightarrow a = 1\]; \[\mathop {\lim }\limits_{x \to + \infty } \left( {\frac{{{x^2} + bx + 1}}{{x + 2}} - x} \right) = \mathop {\lim }\limits_{x \to + \infty } \frac{{\left( {b - 2} \right)x + 1}}{{x + 2}} = b - 2 = 1 \Leftrightarrow b = 3\].
Vậy: \(T = 2a + 3b - c = 2 + 9 - 1 = 10\). Chọn đáp án B.
Lời giải
Đáp số: \(9\).
Ta có \[f\left( t \right) = - {t^3} + 45{t^2} + 600t \Rightarrow f'\left( t \right) = - 3{t^2} + 90t + 600\].
Tốc độ truyền bệnh lớn hơn 1200 nên \[f'\left( t \right) > 1200 \Leftrightarrow - 3{t^2} + 90t + 600 > 1200 \Leftrightarrow - 3{t^2} + 90t - 600 > 0 \Leftrightarrow 10 < t < 20\].
Vậy có 9 ngày tốc độ truyền bệnh lớn hơn 1200.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 4
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
![Cho hàm số \[y = \frac{{a{x^2} + bx + 1}}{{cx + 2}}\] có đồ thị như hình vẽ bên dưới. Tính giá trị biểu thức: \(T = 2a + 3b - c\). A. 9. B. 10. C. 8. D. 11. (ảnh 1)](https://video.vietjack.com/upload2/quiz_source1/2025/09/4-1759228607.png)
![Cho hàm số \[y = \frac{{ax + b}}{{cx - 1}}\] có đồ thị như hình vẽ bên dưới. Trong các hệ số \(a\), \(b\), \(c\) có bao nhiêu số dương? A. 0. B. 2. C. 1. D. 3. (ảnh 1)](https://video.vietjack.com/upload2/quiz_source1/2025/09/2-1759228513.png)