Câu hỏi:

29/10/2025 3 Lưu

Trong mặt phẳng tọa độ \[Oxy\], xét đường thẳng \[\left( d \right):y = mx + 4\] với \[m \ne 0\].

a) Gọi \[A\] là giao điểm của đường thẳng \[\left( d \right)\] với trục \[Oy\]. Tìm tọa độ của điểm \[A.\]

b) Tìm tất cả các giá trị của \[m\] để đường thẳng \[\left( d \right)\] cắt trục \[Ox\] tại điểm \[B\] sao cho \[OAB\] là tam giác cân.

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Gọi tọa độ điểm \(A\) là \(\left( {{x_A};{y_A}} \right)\). Do điểm \(A\) thuộc trục \(Oy\)nên \({x_A} = 0\)

DO điểm \(A\) thuộc đường thẳng \(\left( d \right):y = mx + 4\) nên

\({y_A} = m{x_A} + 4 = m.0 + 4 = 4\).

Kết luận tọa độ điểm \(A\) là \(\left( {0;4} \right)\).

Tìm tất cả các giá trị của \[m\] để đường thẳng \[\left( d \right)\] cắt trục \[Ox\] tại điểm \[B\] sao cho \[OAB\] là tam giác cân.

Gọi tọa độ điểm \(B\) là \(\left( {{x_B};{y_B}} \right)\). Do điểm \(B\) thuộc trục \(Ox\) nên \({y_B} = 0\).

Vì điểm \(B\) thuộc đường thẳng \(\left( d \right):mx + 4\) nên \(0 = m{x_B} + 4\)

Vì \(m \ne 0 \Rightarrow {x_B} = \frac{{ - 4}}{m} \Rightarrow OB = \left| {{x_B}} \right| = \left| {\frac{{ - 4}}{m}} \right|\).

Vì \(\widehat {AOB} = 90^\circ \) nên để tam giác \(OAB\) là tam giác cân thì \(OA = OB\).

Mà \(OA = 4\) nên \(OB = 4\).

Giải phương trình: \(\left| {\frac{{ - 4}}{m}} \right| = 4 \Leftrightarrow \left[ \begin{array}{l}\frac{{ - 4}}{m} = 4\\\frac{{ - 4}}{m} =  - 4\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}m =  - 1\\m = 1\end{array} \right.\)(tmđk)

Kết luận: \(m = 1\) hoặc \(m =  - 1\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Diện tích bề mặt của quả bóng bàn đó là:

\(S = 4\pi {R^2} \approx 4 \times 3.14 \times {2^2} \approx 50,24\) (cm2).

Lời giải

Chứng minh tứ giác \[BHEK\] nội tiếp.

Ta có  \(H,K\) là chân đường vuông góc từ \(E\) xuống \(AB\) \(BC\) nên \(\widehat {BHE} = 90^\circ \) và \(\widehat {BKE} = 90^\circ \)

Suy ra \(\widehat {BHE} + \widehat {BKE} = 180^\circ \)

Mà hai góc này ở vị trí đối nhau trong tứ giác \(BHEK\).

Vậy tứ giác \(BHEK\) là tứ giác nội tiếp.

Chứng minh \[BH.BA = BK.BC\]

Áp dụng hệ thức lượng cho \(\Delta AEB\) vuông tại \(E\), đường cao \(EH\) có: \(BH.BA = B{E^2}\).

Chứng minh tương tự ta có: \(BK.BC = B{E^2}\).

Vậy \(BH.BA = BK.BC\).

Chứng minh \[H,I,K\] thẳng hàng.

Vì \(CF \bot AB\) tại \(F\) nên \(\widehat {BFC} = 90^\circ \)

Vì \(BE \bot AC\) tại \(E\) nên \(\widehat {BEC} = 90^\circ \)

Xét tứ giác \(BCEF\) có \(\widehat {BFC} = \widehat {BEC}\) (cùng bằng \(90^\circ \)), mà hai góc này cùng nhìn cạnh \(BC\)

Do đó tứ giác \(BCEF\) nội tiếp.

Suy ra \(\widehat {BCE} = \widehat {HFE}\) (cùng phụ với \(\widehat {BFE}\))     \(\left( 1 \right)\)

Vì \(BHEK\) là tứ giác nội tiếp nên \(\widehat {BHK} = \widehat {BEK}\) (hai góc nội tiếp cùng chắn cung \(BK\)).                                     \[\left( 2 \right)\]

Xét \(\Delta HEF\) vuông tại \(H\) có \(HI\) là đường trung tuyến ứng với cạnh huyền \(EF\) nên \(IH = IF = IE = \frac{1}{2}EF\).

Suy ra tam giác \(FHI\) cân tại \(I\), do đó \(\widehat {HFE} = \widehat {FHI}\) \[\left( 3 \right)\]

Mặt khác \(\widehat {BEK} = \widehat {BCE}\) (vì cùng phụ với \(\widehat {EBC}\)) \[\left( 4 \right)\]

Từ (1), (2), (3), (4) suy ra \(\widehat {BHK} = \widehat {FHI}\).

Do tam giác \(ABC\) nhọn, hai điểm \(I,K\) nằm cùng phía đối với đường thẳng \(HF\) nên  là ba điểm thẳng hàng.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP