Cho tam giác \[ABC\] có ba góc nhọn và đường cao \[BE\]. Gọi \[H\] và \[K\] lần lượt là chân các đường vuông góc kẻ từ \[E\] đến các đường thẳng \[AB\] và \[BC\].
1) Chứng minh tứ giác \[BHEK\] nội tiếp.
2) Chứng minh \[BH.BA = BK.BC\].
3) Gọi F là chân đường vuông góc kẻ từ điểm \[C\] đến đường thẳng \[AB\] và \[I\] là trung điểm của \[EF\]. Chứng minh \[H,I,K\] thẳng hàng.
Cho tam giác \[ABC\] có ba góc nhọn và đường cao \[BE\]. Gọi \[H\] và \[K\] lần lượt là chân các đường vuông góc kẻ từ \[E\] đến các đường thẳng \[AB\] và \[BC\].
1) Chứng minh tứ giác \[BHEK\] nội tiếp.
2) Chứng minh \[BH.BA = BK.BC\].
3) Gọi F là chân đường vuông góc kẻ từ điểm \[C\] đến đường thẳng \[AB\] và \[I\] là trung điểm của \[EF\]. Chứng minh \[H,I,K\] thẳng hàng.
Quảng cáo
Trả lời:
|
Chứng minh tứ giác \[BHEK\] nội tiếp. |
|
Ta có \(H,K\) là chân đường vuông góc từ \(E\) xuống \(AB\) \(BC\) nên \(\widehat {BHE} = 90^\circ \) và \(\widehat {BKE} = 90^\circ \) Suy ra \(\widehat {BHE} + \widehat {BKE} = 180^\circ \) Mà hai góc này ở vị trí đối nhau trong tứ giác \(BHEK\). Vậy tứ giác \(BHEK\) là tứ giác nội tiếp. |
|
Chứng minh \[BH.BA = BK.BC\] |
|
Áp dụng hệ thức lượng cho \(\Delta AEB\) vuông tại \(E\), đường cao \(EH\) có: \(BH.BA = B{E^2}\). Chứng minh tương tự ta có: \(BK.BC = B{E^2}\). Vậy \(BH.BA = BK.BC\). |
|
Chứng minh \[H,I,K\] thẳng hàng. |
|
Vì \(CF \bot AB\) tại \(F\) nên \(\widehat {BFC} = 90^\circ \) Vì \(BE \bot AC\) tại \(E\) nên \(\widehat {BEC} = 90^\circ \) Xét tứ giác \(BCEF\) có \(\widehat {BFC} = \widehat {BEC}\) (cùng bằng \(90^\circ \)), mà hai góc này cùng nhìn cạnh \(BC\) Do đó tứ giác \(BCEF\) nội tiếp. Suy ra \(\widehat {BCE} = \widehat {HFE}\) (cùng phụ với \(\widehat {BFE}\)) \(\left( 1 \right)\) Vì \(BHEK\) là tứ giác nội tiếp nên \(\widehat {BHK} = \widehat {BEK}\) (hai góc nội tiếp cùng chắn cung \(BK\)). \[\left( 2 \right)\] Xét \(\Delta HEF\) vuông tại \(H\) có \(HI\) là đường trung tuyến ứng với cạnh huyền \(EF\) nên \(IH = IF = IE = \frac{1}{2}EF\). Suy ra tam giác \(FHI\) cân tại \(I\), do đó \(\widehat {HFE} = \widehat {FHI}\) \[\left( 3 \right)\] Mặt khác \(\widehat {BEK} = \widehat {BCE}\) (vì cùng phụ với \(\widehat {EBC}\)) \[\left( 4 \right)\] Từ (1), (2), (3), (4) suy ra \(\widehat {BHK} = \widehat {FHI}\). Do tam giác \(ABC\) nhọn, hai điểm \(I,K\) nằm cùng phía đối với đường thẳng \(HF\) nên là ba điểm thẳng hàng. |
Hot: 1000+ Đề thi cuối kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
|
Giải hệ phương trình: \[\left\{ \begin{array}{l}2x + \frac{3}{{y - 1}} = 5\\4x - \frac{1}{{y - 1}} = 3\end{array} \right.\]. |
|
Điều kiện xác định:\(y \ne 1\) Đặt \(\frac{1}{{y - 1}} = b\), ta có hệ phương trình: \(\left\{ \begin{array}{l}2x + 3b = 5\\4x - b = 3\end{array} \right.\) Giải hệ phương trình: \(\left\{ \begin{array}{l}2x + 3b = 5\\4x - b = 3\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}4x + 6b = 10\\4x - b = 3\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}4x - b = 3\\7b = 7\end{array} \right.\) \( \Leftrightarrow \left\{ \begin{array}{l}4x = b + 3\\b = 1\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}x = 1\\b = 1\end{array} \right.\) Với \(b = 1 \Rightarrow \frac{1}{{y - 1}} = 1 \Rightarrow y = 2\) (thỏa mãn điều kiện xác định). Vậy hệ phương trình có nghiệm duy nhất là \(\left( {x;y} \right) = \left( {1;2} \right).\) |
Lời giải
Gọi vận tốc đi bộ của An là \(x\) (đơn vị: km/h, \(x > 0\))
Vận tốc đi xe đạp của An là \(x + 9\) (km/h).
Thời gian An đi bộ từ nhà An đến nhà Bình là \(\frac{3}{x}\) (giờ).
Thời gian đi xe đạp từ nhà Bình về nhà An là \(\frac{3}{{x + 9}}\) (giờ).
Vì thời gian đi buổi chiều ít hơn thời gian đi buổi sáng là 45 phút nên ta có phương trình:
\(\frac{3}{x} - \frac{3}{{x + 9}} = \frac{3}{4}\)
\( \Leftrightarrow \frac{{3\left( {x + 9} \right) - 3x}}{{x\left( {x + 9} \right)}} = \frac{3}{4}\)
\( \Leftrightarrow \frac{{27}}{{{x^2} + 9x}} = \frac{3}{4} \Leftrightarrow \frac{9}{{{x^2} + 9x}} = \frac{1}{4}\)
\( \Rightarrow {x^2} + 9x - 36 = 0 \Leftrightarrow \left( {x - 3} \right)\left( {x + 12} \right) = 0 \Leftrightarrow \left[ \begin{array}{l}x = 3\\x = - 12\end{array} \right.\)
Kết hợp điều kiện loại \(x = - 12\), thử lại thấy \(x = 3\) thỏa mãn yêu cầu bài toán.
Kết luận: vận tốc đi bộ của An là 3 km/h.Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
