Câu hỏi:

04/02/2021 4,709

Cho x,y là các số thực dương thỏa mãn điều kiện 5x+2y+33xy+x+1=5xy5+3-x-2y+yx-2

Tính giá trị nhỏ nhất của biểu thức T =x + y.

Đáp án chính xác

Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).

Tổng ôn toán Tổng ôn lý Các môn khác

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Từ giả thiết ta suy ra

Xét hàm số f(t)=5t-13t+t  với t , f'(t)=5t.ln5+3-t.ln3+1>0; t

Suy ra y= f( t) là hàm số đồng biến trên R mà từ ( * ) suy ra

f (x+ 2y) =f( xy-1)  hay x+ 2y= xy-1

với x>0 suy ra y>1.

Khi đó

 

Xét hàm số

 f(y)=y2+y+1y-1 trên 1;+f'y=y2-2y-2y-12=0y=1±3

Vẽ BBT ta thấy với f(y) trên 1;+ đạt GTNN tại y = 1+3

Do đó, giá trị nhỏ nhất của hàm số là f(1+3)=3+23.

Vậy kết quả là 3+23

Chọn B.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Cho hàm số  y=2x3+3m-1x2+6m-2x-1 với m là tham số thực. Tìm tất cả các giá trị của m để hàm số có điểm cực đại và điểm cực tiểu nằm trong khoảng (-2; 3) .

Xem đáp án » 18/11/2019 106,675

Câu 2:

Hỏi có bao nhiêu giá trị nguyên dương của tham số m sao cho hàm số y=2x2+(1-m)x+1+mx-m  đồng biến trên khoảng 1;+?

Xem đáp án » 18/11/2019 61,984

Câu 3:

Gọi x1; x2 là hai điểm cực trị của hàm số y= 4x3+mx2-3x. Tìm các giá trị thực của tham số m để x1+4x2=0

Xem đáp án » 18/11/2019 48,715

Câu 4:

Cho hàm số  y=2x3+mx2-12x-13 với m là tham số thực. Tìm giá trị của m để đồ thị hàm số có hai điểm cực trị cách đều trục tung.

Xem đáp án » 18/11/2019 45,670

Câu 5:

Tìm tất cả các giá trị thực của tham số m  sao cho hàm số y= (m-3)x- (2m+1).cos x   luôn nghịch biến trên R?

Xem đáp án » 18/11/2019 43,733

Câu 6:

Biết đồ thị hàm số  y=2m-nx2+mx+1x2+mx+n-6 (m, n là tham số) nhận trục hoành và trục tung làm hai đường tiệm cận. Tính m+ n 

Xem đáp án » 04/02/2021 32,846

Câu 7:

Cho hàm số y=2x+1x+1  có đồ thị (C) . Tìm tất cả các giá trị thực của tham m số sao cho đường thẳng d: y= x+m-1 cắt (C)   tại hai điểm phân biệt A; B thỏa mãn AB=23

Xem đáp án » 18/11/2019 31,549

Bình luận


Bình luận
Đăng ký gói thi VIP

VIP 1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 2 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 3 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 4 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Siêu tiết kiệm - Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

Vietjack official store