Câu hỏi:

28/01/2021 2,788 Lưu

Cho các mệnh đề sau

(1) Đường thẳng y = y0 là đường tiệm cận ngang của đồ thị hàm số y = f(x) nếulimxx0+fx=y0 hoc limxx0-fx=y0

(2) Đường thẳng y = y0 là đường tiệm cận ngang của đồ thị hàm số y = f(x) nếu limx-fx=y0 hoc limx+fx=y0

(3) Đường thẳng x = x0 là đường tiệm cận đứng của đồ thị hàm số y = f(x) nếu limxx0+fx=+ hoc limxx0-fx=-

(4) Đường thẳng x = x0 là đường tiệm cận đứng của đồ thị hàm số y = f(x) nếu limxx0+fx=- hoc limxx0-fx=-

Trong các mệnh đề trên, số mệnh đề đúng là: 

A. 1

B. 2

C. 3

D. 4

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Chọn C

Dựa vào định nghĩa mệnh đề 1 sai và mệnh đề 2, 3, 4 đúng.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

A. m>2; m52m<-2 

B. m>2m<-2 

C. m > 2

D. m>2m-52

Lời giải

Bài tập trắc nghiệm Giải tích 12 | Câu hỏi trắc nghiệm Giải tích 12

Nên đồ thị hàm số có 1 cận ngang là y= 0

Đồ thị hàm số có ba đường tiệm cận khi đồ thị hàm số có 2 TCĐ

⇒ phương trình x2-2mx+4=0 có hai nghiệm phân biệt khác -1.

Bài tập trắc nghiệm Giải tích 12 | Câu hỏi trắc nghiệm Giải tích 12

Chọn A

Lời giải

Ta có:

Bài tập trắc nghiệm Giải tích 12 | Câu hỏi trắc nghiệm Giải tích 12

Do đó, đồ thị hàm số có 2 đường tiệm cận ngang là y= 2; y = -2

Vậy đồ thị hàm số đã cho có tất cả 4 đường tiệm cận.

Chọn  D

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

A. y = 1

B. y = 0

C. y = -1

D. Không tồn tại

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

A. Đồ thị hàm số không có tiệm cận ngang.

B. Đồ thị hàm số có đúng một tiệm cận ngang.

C. Đồ thị hàm số có hai tiệm cận ngang là y = 1 và y = -1

D. Đồ thị hàm số có hai tiệm cận ngang là x = 1 và x = -1

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP