Câu hỏi:

12/07/2024 504

Dựng ABC, biết BC = 6 cm, A^=400 và đường cao AH = 4 cm.

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Cách dựng:

- Dựng đoạn thẳng BC = 6 cm.

- Dựng cung chứa góc 400 trên đoạn thẳng BC.

- Dựng đường thẳng d song song với BC và cách BC một khoảng bằng 4 cm, như sau: Dựng đường trung trực của BC, gọi I là giao điểm của với BC, trên lấy điểm K sao cho IK = 4 cm.

- Dựng đường thẳng d vuông góc với tại K.

- Gọi giao điểm của (d) và cung chứa góc là A và A’. khi đó, hai tam giác ABC và A’BC đều thỏa mãn yêu cầu bài toán.

Chứng minh:

- Ta có ngay BC = 6 cm vì theo cách dựng.

- Các góc A^A'^ đều bằng 400 do A, A’ nằm trên cung chứa góc 400 dựng trên đoạn BC.

- Các hình AHIK và A’HIK là các hình chữ nhật nên AH = A’H = IK = 4 cm.

Biện luận: ta dựng được hai tam giác ABC và A’BC thỏa điều kiện đề bài nhưng hai tam giác này bằng nhau (đối xứng nhau qua IK) nên bài toán chỉ có một nghiệm hình.

Bình luận


Bình luận

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Xét hai tam giác ACD và BDC, ta có:

CD chung

ADC^=BCD^, vì ABCD là hình thang cân.

AD = BC, vì ABCD là hình thang cân.

Do đó:

ACD=BDCc.g.c => CAD^=CBD^

Vậy các điểm A, B nằm cùng phía đối với CD và thỏa mãn  nên bốn điểm A, B, C, D cùng thuộc một đường tròn.

Lời giải

- Phần thuận:

Xét hai tam giác vuông BFC, DCE có

BC = CD (do ABCD là hình vuông)

CE = CF (gt) nên BFC=DCE

Do đó, CBF^=CDE^

BEM^=CED^ (đối đỉnh) nên

900=CDE^+CED^=CBF^+BEM^BMD^=900

Vậy điểm M nằm trên đường tròn đường kính BD.

- Giới hạn:

+ Nếu EBMB

+ Nếu ECMC

Vậy điểm M chỉ nằm trên cung nhỏ BC của đường tròn đường kính BD.

- Phần đảo:

Lấy điểm M trên cung nhỏ BC của đường tròn đường kính BD. Nối MB, MD lần lượt cắt CD, BC tại F, E

Ta có BMD^=900 (góc nội tiếp chắn nửa đường tròn) nên BFC=DCE g.c.g do đó CF = CE.

- Kết luận: quỹ tích điểm M nằm trên cung nhỏ BC của đường tròn đường kính BD.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay