Cho I, O lần lượt là tâm đường tròn nội tiếp, tâm đường tròn ngoại tiếp của tam giác ABC với , gọi H là giao điểm của các đường cao BB’ và CC’. Chứng minh các điểm A, B, O, H, I cùng thuộc một đường tròn.
Câu hỏi trong đề: Bài tập ôn tập chương 3 hình học 9 có đáp án !!
Quảng cáo
Trả lời:
Xét tứ giác AB’HC’ ta có:
Xét ta có:
Như vậy, H và I đều nằm trên cung chứa góc dựng trên BC.
Mặt khác, nội tiếp trong đường tròn tâm O nên góc nội tiếp trong đường tròn (O) có số đo là
Vậy O nằm trên cung chứa góc dựng trên BC.
Nghĩa là 5 điểm B, C, O, I, H nằm trên cùng một đường tròn chứa cung chứa góc dựng trên BC.
Hot: 500+ Đề thi vào 10 file word các Sở Hà Nội, TP Hồ Chí Minh có đáp án 2025 (chỉ từ 100k). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Xét hai tam giác và , ta có:
CD chung
, vì ABCD là hình thang cân.
AD = BC, vì ABCD là hình thang cân.
Do đó:
=>
Vậy các điểm A, B nằm cùng phía đối với CD và thỏa mãn nên bốn điểm A, B, C, D cùng thuộc một đường tròn.
Lời giải
- Phần thuận:
Xét hai tam giác vuông có
BC = CD (do ABCD là hình vuông)
CE = CF (gt) nên
Do đó,
Mà (đối đỉnh) nên
Vậy điểm M nằm trên đường tròn đường kính BD.
- Giới hạn:
+ Nếu
+ Nếu
Vậy điểm M chỉ nằm trên cung nhỏ của đường tròn đường kính BD.
- Phần đảo:
Lấy điểm M trên cung nhỏ của đường tròn đường kính BD. Nối MB, MD lần lượt cắt CD, BC tại F, E
Ta có (góc nội tiếp chắn nửa đường tròn) nên do đó CF = CE.
- Kết luận: quỹ tích điểm M nằm trên cung nhỏ của đường tròn đường kính BD.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.