Câu hỏi:
12/07/2024 642Cho I, O lần lượt là tâm đường tròn nội tiếp, tâm đường tròn ngoại tiếp của tam giác ABC với , gọi H là giao điểm của các đường cao BB’ và CC’. Chứng minh các điểm A, B, O, H, I cùng thuộc một đường tròn.
Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).
Quảng cáo
Trả lời:
Xét tứ giác AB’HC’ ta có:
Xét ta có:
Như vậy, H và I đều nằm trên cung chứa góc dựng trên BC.
Mặt khác, nội tiếp trong đường tròn tâm O nên góc nội tiếp trong đường tròn (O) có số đo là
Vậy O nằm trên cung chứa góc dựng trên BC.
Nghĩa là 5 điểm B, C, O, I, H nằm trên cùng một đường tròn chứa cung chứa góc dựng trên BC.
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Cho hình thang cân ABCD (AB // CD). Chứng minh rằng bốn điiểm A, B, C, D cùng thuộc một đường tròn.
Câu 2:
Cho hình vuông ABCD. Trên cạnh BC lấy điểm E, trên tia đối của tia CD lấy điểm F sao cho CE = CF. Gọi M là giao điểm của hai đường thẳng DE và BF. Tìm quỹ tích điểm M khi E di động trên cạnh BC.
Câu 4:
Cho tam giác ABC vuông ở A. vẽ hai nửa đường tròn đường kính AB và AC ra phía ngoài của tam giác. Qua A vẽ cát tuyến MAN (M thuộc nửa đường tròn đường kính AB, N thuộc nửa đường tròn đường kính AC)
a) Tứ giác BCNM là hình gì?
b) Tìm quỹ tích trung điểm I của đoạn MN khi cát tuyến MAN quay quanh A.
Câu 5:
Cho vuông ở A, có cạnh BC cố định. Gọi I là giao điểm của ba đường phân giác trong. Tìm quỹ tích I khi A thay đổi.
Câu 6:
Dựng tam giác ABC biết:
a) BC = 8cm, và đường cao AH = 6cm.
b) BC = 8cm, và đường cao AH = cm.
c) BC = 4cm, và đường cao AH = 9 cm.
về câu hỏi!