Câu hỏi:

29/12/2020 718

Cho cung một phần tư đường tròn với hai bán kính OA, OB vuông góc với nhau. Trên cung này lấy một điểm C tùy ý không trùng với A và B. Vẽ CH vuông góc với OA. Gọi I là tâm đường tròn nội tiếp tam giác HOC.

a) Chứng minh rằng AIO=CIO

b) Tìm quỹ tích điểm I khi điểm C di động trên cung AB.

Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).

Tổng ôn toán Tổng ôn lý Các môn khác

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

a) Xét hai tam giác AIO và CIO có:

OA = OC

OI chung

AIO^=CIO^

Nên AIO=CIO c.g.c

b) Tìm quỹ tích điểm I khi C di động trên cung AB.

- Phần thuận:

Ta có:

AIO^=CIO^=1800-IOC^+ICO^=1800-12HOC^+HCO^=1800-450=1350

Vì A, O cố định nên quỹ tích điểm I nằm trên cung 1350 dựng trên đoạn AO.

- Giới hạn:

Vì C chỉ chạy trên cung AB nên điểm I chỉ chạy trên cung chứa góc 1350 dựng trên đoạn AO thuộc nửa mặt phẳng bờ AO có chứa điểm B.

- Phần đảo:

Lấy điểm I trên cung chứa góc 1350 dựng trên đoạn AO. Dựng OC sao cho OI là tia phân giác góc AOC^ (C nằm trên cung), từ C hạ  CHOA

AIO^=CIO^=1350 nên CIA^=3600-2.1350=900, do vậy C, I, H, A cùng nằm trên cùng một đường tròn.

Từ đó suy ra ICH^=IAH^=ICO^ => IC là tia phân giác góc OCH^, vì vậy I là tâm đường tròn nội tiếp tam giác COH.

- Kết luận: quỹ tích điểm I là cung chứa góc 1350 dựng trên đoạn AO thuộc nửa mặt phẳng bờ AO có chứa điểm B.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Cho hình thang cân ABCD (AB // CD). Chứng minh rằng bốn điiểm A, B, C, D cùng thuộc một đường tròn.

Xem đáp án » 12/07/2024 5,971

Câu 2:

Cho hình vuông ABCD. Trên cạnh BC lấy điểm E, trên tia đối của tia CD lấy điểm F sao cho CE = CF. Gọi M là giao điểm của hai đường thẳng DE và BF. Tìm quỹ tích điểm M khi E di động trên cạnh BC.

Xem đáp án » 12/07/2024 5,625

Câu 3:

Dựng cung chứa góc 600 trên đoạn AB = 4 cm.

Xem đáp án » 12/07/2024 2,635

Câu 4:

Cho tam giác ABC vuông ở A. vẽ hai nửa đường tròn đường kính AB và AC ra phía ngoài của tam giác. Qua A vẽ cát tuyến MAN (M thuộc nửa đường tròn đường kính AB, N thuộc nửa đường tròn đường kính AC)

a) Tứ giác BCNM là hình gì?

b) Tìm quỹ tích trung điểm I của đoạn MN khi cát tuyến MAN quay quanh A.

Xem đáp án » 12/07/2024 2,031

Câu 5:

Cho ABC vuông ở A, có cạnh BC cố định. Gọi I là giao điểm của ba đường phân giác trong. Tìm quỹ tích I khi A thay đổi.

Xem đáp án » 12/07/2024 1,684

Câu 6:

Dựng tam giác ABC biết:

a) BC = 8cm, A^=600 và đường cao AH = 6cm.

b) BC = 8cm, A^=600 và đường cao AH = 3cm.

c) BC = 4cm, A^=600 và đường cao AH = 9 cm.

Xem đáp án » 12/07/2024 1,398

Câu 7:

Dựng tam giác ABC biết BC = 3cm, A^=500, AB = 2cm.

Xem đáp án » 12/07/2024 1,274

Bình luận


Bình luận
Đăng ký gói thi VIP

VIP 1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 2 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 3 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 4 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Siêu tiết kiệm - Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

Vietjack official store