Cho cung một phần tư đường tròn với hai bán kính OA, OB vuông góc với nhau. Trên cung này lấy một điểm C tùy ý không trùng với A và B. Vẽ CH vuông góc với OA. Gọi I là tâm đường tròn nội tiếp tam giác HOC.
a) Chứng minh rằng
b) Tìm quỹ tích điểm I khi điểm C di động trên cung AB.
Câu hỏi trong đề: Bài tập ôn tập chương 3 hình học 9 có đáp án !!
Quảng cáo
Trả lời:
a) Xét hai tam giác AIO và CIO có:
OA = OC
OI chung
Nên
b) Tìm quỹ tích điểm I khi C di động trên cung AB.
- Phần thuận:
Ta có:
Vì A, O cố định nên quỹ tích điểm I nằm trên cung dựng trên đoạn AO.
- Giới hạn:
Vì C chỉ chạy trên cung nên điểm I chỉ chạy trên cung chứa góc dựng trên đoạn AO thuộc nửa mặt phẳng bờ AO có chứa điểm B.
- Phần đảo:
Lấy điểm I trên cung chứa góc dựng trên đoạn AO. Dựng OC sao cho OI là tia phân giác góc (C nằm trên cung), từ C hạ
Vì nên , do vậy C, I, H, A cùng nằm trên cùng một đường tròn.
Từ đó suy ra => IC là tia phân giác góc , vì vậy I là tâm đường tròn nội tiếp tam giác COH.
- Kết luận: quỹ tích điểm I là cung chứa góc dựng trên đoạn AO thuộc nửa mặt phẳng bờ AO có chứa điểm B.
Hot: 1000+ Đề thi giữa kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải

Xét hai tam giác và , ta có:
CD chung
, vì ABCD là hình thang cân.
AD = BC, vì ABCD là hình thang cân.
Do đó:
=>
Vậy các điểm A, B nằm cùng phía đối với CD và thỏa mãn nên bốn điểm A, B, C, D cùng thuộc một đường tròn.
Lời giải

- Phần thuận:
Xét hai tam giác vuông có
BC = CD (do ABCD là hình vuông)
CE = CF (gt) nên
Do đó,
Mà (đối đỉnh) nên
Vậy điểm M nằm trên đường tròn đường kính BD.
- Giới hạn:
+ Nếu
+ Nếu
Vậy điểm M chỉ nằm trên cung nhỏ của đường tròn đường kính BD.
- Phần đảo:
Lấy điểm M trên cung nhỏ của đường tròn đường kính BD. Nối MB, MD lần lượt cắt CD, BC tại F, E
Ta có (góc nội tiếp chắn nửa đường tròn) nên do đó CF = CE.
- Kết luận: quỹ tích điểm M nằm trên cung nhỏ của đường tròn đường kính BD.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.