Câu hỏi:

04/07/2022 890

Trong mặt phẳng tọa độ Oxy, cho vectơ \(\overrightarrow u = \left( {a;\,\,b} \right)\). Ta chọn điểm A sao cho \(\overrightarrow {OA} = \overrightarrow u \).

Xét vectơ đơn vị \(\overrightarrow i \) trên trục hoành Ox và vectơ đơn vị \(\overrightarrow j \) trên trục tung Oy (Hình 12).

Media VietJack

Tìm hoành độ và tung độ của điểm A.

Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).

Tổng ôn toán Tổng ôn lý Các môn khác

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Hướng dẫn giải

Ta có: \(\overrightarrow {OA} = \overrightarrow u \), mà (a; b) là tọa độ của vectơ \(\overrightarrow u \) nên điểm A có hoành độ là a và tung độ là b.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Trong mặt phẳng toạ độ Oxy, cho tam giác ABC. Các điểm M(1; – 2), N(4; – 1) và P(6; 2) lần lượt là trung điểm của các cạnh BC, CA, AB. Tìm tọa độ của các điểm A, B, C.

Xem đáp án » 11/07/2024 7,047

Câu 2:

Nêu cách xác định tọa độ của điểm M.

Xem đáp án » 13/07/2024 3,863

Câu 3:

Trong mặt phẳng toạ độ Oxy, cho ba điểm không thẳng hàng A(– 3; 1), B(– 1; 3), I(4; 2). Tìm toạ độ của hai điểm C, D sao cho tứ giác ABCD là hình bình hành nhận I làm tâm đối xứng.

Xem đáp án » 11/07/2024 3,552

Câu 4:

Tìm các số thực a và b sao cho mỗi cặp vectơ sau bằng nhau:

\(\overrightarrow u = \left( {2a - 1; - 3} \right)\) và \(\overrightarrow v = \left( {3;\,4b + 1} \right)\);

Xem đáp án » 11/07/2024 3,410

Câu 5:

Biểu diễn vectơ \(\overrightarrow {OB} \) qua hai vectơ \(\overrightarrow i \) và \(\overrightarrow j \).

Xem đáp án » 13/07/2024 2,513

Câu 6:

Trong mặt phẳng toạ độ Oxy, cho ba điểm A(2; 3), B(– 1; 1), C(3; – 1).

Tìm toạ độ điểm M sao cho \(\overrightarrow {AM} = \overrightarrow {BC} \).

Xem đáp án » 11/07/2024 2,391

Câu 7:

\(\overrightarrow x = \left( {a + b;\,\, - 2a + 3b} \right)\) và \(\overrightarrow y = \left( {2a - 3;\,\,4b} \right)\).

Xem đáp án » 13/07/2024 2,162

Bình luận


Bình luận
Đăng ký gói thi VIP

VIP 1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 2 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 3 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 4 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Siêu tiết kiệm - Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

Vietjack official store