Câu hỏi:
11/07/2024 1,492A. Các câu hỏi trong bài
Trên màn hình ra đa của đài kiểm soát không lưu (được coi như mặt phẳng tọa độ Oxy với đơn vị trên các trục tính theo ki-lô-mét), một máy bay trực thăng chuyển động thẳng đều từ thành phố A có tọa độ (400; 50) đến thành phố B có tọa độ (100; 450) (Hình 17) và thời gian bay quãng đường AB là 3 giờ. Người ta muốn biết vị trí (tọa độ) của máy bay trực thăng tại thời điểm sau khi xuất phát t giờ (0 ≤ t ≤ 3).
Làm thế nào để xác định được tọa độ của máy bay trực thăng tại thời điểm trên?
Sách mới 2k7: Bộ 20 đề minh họa Toán, Lí, Hóa, Văn, Sử, Địa…. form chuẩn 2025 của Bộ giáo dục (chỉ từ 49k/cuốn).
Quảng cáo
Trả lời:
Hướng dẫn giải
Sau bài học này, ta giải quyết được bài toán này như sau:
Gọi T(x; y) là vị trí máy bay trực thăng tại thời điểm sau khi xuất phát t giờ (0 ≤ t ≤ 3).
Ta có: \(\overrightarrow {AT} = \left( {x - 400;\,y - 50} \right)\); \(\overrightarrow {AB} = \left( {100 - 400;\,450 - 50} \right) = \left( { - 300;400} \right)\).
Theo bài ra có thời gian bay quãng đường AB là 3 giờ, suy ra tọa độ máy bay trực thăng tại thời điểm sau khi xuất phát t giờ chính là tại vị trí T sao cho \(\overrightarrow {AT} = \frac{t}{3}\overrightarrow {AB} \).
Ta có: \(\frac{t}{3}\overrightarrow {AB} = \frac{t}{3}\left( { - 300;\,\,400} \right) = \left( {\frac{t}{3}.\left( { - 300} \right);\frac{t}{3}.400} \right) = \left( { - 100t;\,\frac{{400t}}{3}} \right)\)
Khi đó: \(\overrightarrow {AT} = \frac{t}{3}\overrightarrow {AB} \Leftrightarrow \) \(\left( {x - 400;\,\,y - 50} \right) = \left( { - 100t;\,\,\frac{{400t}}{3}} \right)\)
\( \Leftrightarrow \left\{ \begin{array}{l}x - 400 = - 100t\\y - 50 = \frac{{400t}}{3}\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}x = 400 - 100t\\y = 50 + \frac{{400t}}{3}\end{array} \right.\).
Vậy tọa độ của máy bay trực thăng tại thời điểm sau khi xuất phát t giờ là\(T\left( {400 - 100t;\,\,50 + \frac{{400t}}{3}} \right)\) với (0 ≤ t ≤ 3).
Đã bán 321
Đã bán 100
Đã bán 218
Đã bán 1k
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Trong mặt phẳng tọa độ Oxy, cho A(– 2; 3) ; B(4; 5); C(2; – 3).
Chứng minh ba điểm A, B, C không thẳng hàng.
Câu 2:
Tìm tọa độ điểm D sao cho tứ giác ABCD là hình thang có AB // CD và CD = 2AB.
Câu 4:
Tìm tọa độ điểm M trên đường thẳng BC sao cho diện tích của tam giác ABC bằng hai lần diện tích của tam giác ABM.
Câu 6:
Trong mặt phẳng tọa độ Oxy, cho tam giác ABC có trung điểm các cạnh BC, CA, AB tương ứng là M(2; 0); N(4; 2); P(1; 3).
Tìm tọa độ các điểm A, B, C.
Câu 7:
B. Bài tập
Trong mặt phẳng tọa độ Oxy, cho \(\overrightarrow a = \left( { - 1;\,\,2} \right)\), \(\overrightarrow b = \left( {3;\,\,1} \right)\), \(\overrightarrow c = \left( {2;\, - 3} \right)\).
Tìm tọa độ vectơ \(\overrightarrow u = 2\overrightarrow a + \overrightarrow b - 3\overrightarrow c \).
12 Bài tập Ứng dụng của hàm số bậc hai để giải bài toán thực tế (có lời giải)
13 câu Trắc nghiệm Tích của vectơ với một số có đáp án (Thông hiểu)
10 Bài tập Ứng dụng ba đường conic vào các bài toán thực tế (có lời giải)
185 câu Trắc nghiệm Toán 10 Bài 1:Phương trình đường thẳng trong mặt phẳng oxy có đáp án (Mới nhất)
10 Bài tập Tính số trung bình, trung vị, tứ phân vị và mốt của mẫu số liệu cho trước (có lời giải)
50 câu trắc nghiệm Thống kê cơ bản (phần 1)
10 Bài tập Viết phương trình cạnh, đường cao, trung tuyến, phân giác của tam giác (có lời giải)
15 câu Trắc nghiệm Toán 10 Kết nối tri thức Quy tắc đếm có đáp án
Hãy Đăng nhập hoặc Tạo tài khoản để gửi bình luận