Câu hỏi:
11/07/2024 1,088A. Các câu hỏi trong bài
Trên màn hình ra đa của đài kiểm soát không lưu (được coi như mặt phẳng tọa độ Oxy với đơn vị trên các trục tính theo ki-lô-mét), một máy bay trực thăng chuyển động thẳng đều từ thành phố A có tọa độ (400; 50) đến thành phố B có tọa độ (100; 450) (Hình 17) và thời gian bay quãng đường AB là 3 giờ. Người ta muốn biết vị trí (tọa độ) của máy bay trực thăng tại thời điểm sau khi xuất phát t giờ (0 ≤ t ≤ 3).
Làm thế nào để xác định được tọa độ của máy bay trực thăng tại thời điểm trên?
Sách mới 2k7: 30 đề đánh giá năng lực DHQG Hà Nội, Tp. Hồ Chí Minh, BKHN 2025 mới nhất (600 trang - chỉ từ 140k).
Quảng cáo
Trả lời:
Hướng dẫn giải
Sau bài học này, ta giải quyết được bài toán này như sau:
Gọi T(x; y) là vị trí máy bay trực thăng tại thời điểm sau khi xuất phát t giờ (0 ≤ t ≤ 3).
Ta có: \(\overrightarrow {AT} = \left( {x - 400;\,y - 50} \right)\); \(\overrightarrow {AB} = \left( {100 - 400;\,450 - 50} \right) = \left( { - 300;400} \right)\).
Theo bài ra có thời gian bay quãng đường AB là 3 giờ, suy ra tọa độ máy bay trực thăng tại thời điểm sau khi xuất phát t giờ chính là tại vị trí T sao cho \(\overrightarrow {AT} = \frac{t}{3}\overrightarrow {AB} \).
Ta có: \(\frac{t}{3}\overrightarrow {AB} = \frac{t}{3}\left( { - 300;\,\,400} \right) = \left( {\frac{t}{3}.\left( { - 300} \right);\frac{t}{3}.400} \right) = \left( { - 100t;\,\frac{{400t}}{3}} \right)\)
Khi đó: \(\overrightarrow {AT} = \frac{t}{3}\overrightarrow {AB} \Leftrightarrow \) \(\left( {x - 400;\,\,y - 50} \right) = \left( { - 100t;\,\,\frac{{400t}}{3}} \right)\)
\( \Leftrightarrow \left\{ \begin{array}{l}x - 400 = - 100t\\y - 50 = \frac{{400t}}{3}\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}x = 400 - 100t\\y = 50 + \frac{{400t}}{3}\end{array} \right.\).
Vậy tọa độ của máy bay trực thăng tại thời điểm sau khi xuất phát t giờ là\(T\left( {400 - 100t;\,\,50 + \frac{{400t}}{3}} \right)\) với (0 ≤ t ≤ 3).
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Tìm tọa độ điểm D sao cho tứ giác ABCD là hình thang có AB // CD và CD = 2AB.
Câu 2:
Trong mặt phẳng tọa độ Oxy, cho A(– 2; 3) ; B(4; 5); C(2; – 3).
Chứng minh ba điểm A, B, C không thẳng hàng.
Câu 4:
Tìm tọa độ điểm M trên đường thẳng BC sao cho diện tích của tam giác ABC bằng hai lần diện tích của tam giác ABM.
Câu 5:
Trong mặt phẳng tọa độ Oxy, cho tam giác ABC có trung điểm các cạnh BC, CA, AB tương ứng là M(2; 0); N(4; 2); P(1; 3).
Tìm tọa độ các điểm A, B, C.
Câu 6:
Câu 7:
B. Bài tập
Trong mặt phẳng tọa độ Oxy, cho \(\overrightarrow a = \left( { - 1;\,\,2} \right)\), \(\overrightarrow b = \left( {3;\,\,1} \right)\), \(\overrightarrow c = \left( {2;\, - 3} \right)\).
Tìm tọa độ vectơ \(\overrightarrow u = 2\overrightarrow a + \overrightarrow b - 3\overrightarrow c \).
về câu hỏi!