Câu hỏi:
04/07/2022 2,197Cho ba điểm A(1; 1) ; B(4; 3) và C (6; – 2).
Chứng minh ba điểm A, B, C không thẳng hàng.
Sách mới 2k7: 30 đề đánh giá năng lực DHQG Hà Nội, Tp. Hồ Chí Minh, BKHN 2025 mới nhất (600 trang - chỉ từ 140k).
Quảng cáo
Trả lời:
Hướng dẫn giải
Ta có: \(\overrightarrow {AB} = \left( {4 - 1;\,3 - 1} \right) = \left( {3;\,2} \right)\), \(\overrightarrow {AC} = \left( {6 - 1;\,\left( { - 2} \right) - 1} \right) = \left( {5;\, - 3} \right)\).
Vì \(\frac{3}{5} \ne \frac{2}{{ - 3}}\) nên \(\overrightarrow {AB} \ne k\overrightarrow {AC} \).
Vậy ba điểm A, B, C không thẳng hàng.
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Tìm tọa độ điểm D sao cho tứ giác ABCD là hình thang có AB // CD và CD = 2AB.
Câu 2:
Trong mặt phẳng tọa độ Oxy, cho A(– 2; 3) ; B(4; 5); C(2; – 3).
Chứng minh ba điểm A, B, C không thẳng hàng.
Câu 4:
Tìm tọa độ điểm M trên đường thẳng BC sao cho diện tích của tam giác ABC bằng hai lần diện tích của tam giác ABM.
Câu 5:
Trong mặt phẳng tọa độ Oxy, cho tam giác ABC có trung điểm các cạnh BC, CA, AB tương ứng là M(2; 0); N(4; 2); P(1; 3).
Tìm tọa độ các điểm A, B, C.
Câu 6:
Câu 7:
B. Bài tập
Trong mặt phẳng tọa độ Oxy, cho \(\overrightarrow a = \left( { - 1;\,\,2} \right)\), \(\overrightarrow b = \left( {3;\,\,1} \right)\), \(\overrightarrow c = \left( {2;\, - 3} \right)\).
Tìm tọa độ vectơ \(\overrightarrow u = 2\overrightarrow a + \overrightarrow b - 3\overrightarrow c \).
về câu hỏi!