Câu hỏi:

04/07/2022 555

Lập phương trình đường tròn đi qua ba điểm A(1; 2), B(5; 2), C(1; – 3).

Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa... kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 70k).

Tổng ôn Toán-lý hóa Văn-sử-đia Tiếng anh & các môn khác

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Hướng dẫn giải

Giả sử tâm của đường tròn là điểm I(a; b).

Ta có IA = IB = IC IA2 = IB2 = IC2.

Vì IA2 = IB2, IB2 = IC2 nên

\(\left\{ \begin{array}{l}{\left( {1 - a} \right)^2} + {\left( {2 - b} \right)^2} = {\left( {5 - a} \right)^2} + {\left( {2 - b} \right)^2}\\{\left( {5 - a} \right)^2} + {\left( {2 - b} \right)^2} = {\left( {1 - a} \right)^2} + {\left( { - 3 - b} \right)^2}\end{array} \right.\)

\( \Leftrightarrow \left\{ \begin{array}{l}{a^2} - 2a + 1 = {a^2} - 10a + 25\\{a^2} - 10a + 25 + {b^2} - 4b + 4 = {a^2} - 2a + 1 + {b^2} + 6b + 9\end{array} \right.\)

\( \Leftrightarrow \left\{ \begin{array}{l}8a = 24\\8a + 10b = 19\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}a = 3\\b = - \frac{1}{2}\end{array} \right.\)

Đường tròn tâm I\(\left( {3;\,\, - \frac{1}{2}} \right)\) bán kính R = IA = \(\sqrt {{{\left( {1 - a} \right)}^2} + {{\left( {2 - b} \right)}^2}} \)\( = \sqrt {{{\left( {1 - 3} \right)}^2} + {{\left( {2 - \left( { - \frac{1}{2}} \right)} \right)}^2}} = \sqrt {\frac{{41}}{4}} \).

Phương trình đường tròn là \({\left( {x - 3} \right)^2} + {\left( {y - \left( { - \frac{1}{2}} \right)} \right)^2} = {\left( {\sqrt {\frac{{41}}{4}} } \right)^2}\).

Vậy phương trình đường tròn là \({\left( {x - 3} \right)^2} + {\left( {y + \frac{1}{2}} \right)^2} = \frac{{41}}{4}\).

Bình luận


Bình luận

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Ném đĩa là một môn thể thao thi đấu trong Thế vận hội Olympic mùa hè. Khi thực hiện cú ném, vận động viên thường quay lưng lại với hướng ném, sau đó xoay ngược chiều kim đồng hồ một vòng rưỡi của đường tròn để lấy đà rồi thả tay ra khỏi đĩa. Giả sử đĩa chuyển động trên một đường tròn tâm \(I\left( {0;\,\frac{3}{2}} \right)\) bán kính 0,8 trong mặt phẳng tọa độ Oxy (đơn vị trên hai trục là mét). Đến điểm \(M\left( {\frac{{\sqrt {39} }}{{10}};\,\,2} \right)\), đĩa được ném đi (Hình 47). Trong những giây đầu tiên ngay sau khi được ném đi, quỹ đạo chuyển động của chiếc đĩa có phương trình như thế nào?

Media VietJack

Xem đáp án » 11/07/2024 10,856

Câu 2:

Tìm m sao cho đường thẳng 3x + 4y + m = 0 tiếp xúc với đường tròn

(x + 1)2 + (y – 2)2 = 4.

Xem đáp án » 11/07/2024 10,033

Câu 3:

Lập phương trình tiếp tuyến tại điểm có hoành độ bằng 3 thuộc đường tròn

(x + 2)2 + (y + 7)2 = 169.

Xem đáp án » 11/07/2024 9,245

Câu 4:

Đường tròn đường kính AB với A(3; – 4) và B(– 1; 6);

Xem đáp án » 26/07/2022 6,440

Câu 5:

Tính theo đường chim bay, xác định khoảng cách ngắn nhất để một người ở vị trí có toạ độ (– 3; 4) di chuyển được tới vùng phủ sóng theo đơn vị ki-lô-mét (làm tròn kết quả đến hàng phần mười).

Xem đáp án » 26/07/2022 6,059

Câu 6:

Đường tròn có tâm I(5; – 2) và đi qua điểm M(4; – 1);

Xem đáp án » 26/07/2022 5,245

Câu 7:

Hình 46 mô phỏng một trạm thu phát sóng điện thoại di động đặt ở vị trí I có toạ độ (– 2; 1) trong mặt phẳng toạ độ (đơn vị trên hai trục là ki-lô-mét).

Media VietJack

Lập phương trình đường tròn mô tả ranh giới bên ngoài của vùng phủ sóng, biết rằng trạm thu phát sóng đó được thiết kế với bán kính phủ sóng 3 km.

Xem đáp án » 11/07/2024 4,778
Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Siêu tiết kiệm - Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua