Câu hỏi:
11/07/2024 1,743Tìm tọa độ các tiêu điểm của đường hypebol trong mỗi trường hợp sau:
\(\frac{{{x^2}}}{9} - \frac{{{y^2}}}{{16}} = 1\);
Sách mới 2k7: 30 đề đánh giá năng lực DHQG Hà Nội, Tp. Hồ Chí Minh, BKHN 2025 mới nhất (600 trang - chỉ từ 140k).
Quảng cáo
Trả lời:
Hướng dẫn giải
Ta có: \(\frac{{{x^2}}}{9} - \frac{{{y^2}}}{{16}} = 1 \Leftrightarrow \frac{{{x^2}}}{{{3^2}}} - \frac{{{y^2}}}{{{4^2}}} = 1\).
Do đó hypebol trên có a = 3, b = 4 (do a > 0, b > 0).
Ta có: c2 = a2 + b2 = 32 + 42 = 25 = 52, suy ra c = 5.
Vậy tọa độ các tiêu điểm của hypebol trên là F1(– 5; 0) và F2(5; 0).
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Câu 2:
Câu 3:
Câu 4:
Câu 6:
Tìm tọa độ tiêu điểm và viết phương trình đường chuẩn của đường parabol trong mỗi trường hợp sau:
\({y^2} = \frac{5}{2}x\);
Câu 7:
về câu hỏi!