Câu hỏi:

13/07/2024 1,042

Cho các điểm A, B, C, D, E như Hình 4.35. Biết rằng AC vuông góc với BD, EA = EB và EC = ED.

Chứng minh rằng:

∆AED = ∆BEC.

Media VietJack

Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa... kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 70k).

Tổng ôn Toán-lý hóa Văn-sử-đia Tiếng anh & các môn khác

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Hướng dẫn giải

Xét ∆AED và ∆BEC ta có:  

AE = BE (giả thiết)

\(\widehat {AED}\) = \(\widehat {BEC}\) = 90° (do AC và DB vuông góc với nhau)

ED = EC (giả thiết)

Do đó, ∆AED = ∆BEC (hai cạnh góc vuông).

Bình luận


Bình luận

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Cho hình vuông ABCD. Gọi M và N lần lượt là trung điểm của AB và AD (H.4.36). Chứng minh rằng BN = CM và BN CM.

Media VietJack

Xem đáp án » 13/07/2024 8,115

Câu 2:

Cho bốn điểm A, B, C, D như Hình 4.37. Biết rằng \(\widehat {DAB} = \widehat {CAB}\), hãy chứng minh CB = DB.

Media VietJack

Xem đáp án » 13/07/2024 2,264

Câu 3:

Cho các điểm A, B, C, D, E như Hình 4.34. Biết rằng E là trung điểm của BC, chứng minh rằng ∆ABE = ∆DCE.

Media VietJack

Xem đáp án » 13/07/2024 1,928

Câu 4:

Cho hình chữ nhật ABCD. Trên cạnh AD và BC lần lượt lấy hai điểm E và F sao cho AE = CF (H.4.41). Chứng minh rằng:

AF // CE.

Media VietJack

Xem đáp án » 13/07/2024 1,759

Câu 5:

Cho AH và DK lần lượt là hai đường cao của hai tam giác ABC và DEF như Hình 4.38. Biết rằng ∆ABC = ∆DEF, hãy chứng minh AH = DK.

Media VietJack

Xem đáp án » 13/07/2024 1,743

Câu 6:

Cho AH và DK lần lượt là hai đường cao của tam giác ABC và DEF như Hình 4.39. Chứng minh rằng:

Nếu AB = DE; BC = EF và AH = DK thì ∆ABC = ∆DEF;

Media VietJack

Xem đáp án » 13/07/2024 1,576

Câu 7:

Cho hình chữ nhật ABCD. Trên cạnh AD và BC lần lượt lấy hai điểm E và F sao cho AE = CF (H.4.41). Chứng minh rằng:

AF = CE.

Media VietJack

Xem đáp án » 12/07/2024 1,554