Câu hỏi:
12/07/2024 1,465Quảng cáo
Trả lời:
Hướng dẫn giải
Vì ∆ABC = ∆DCB nên \(\widehat {ACB} = \widehat {DBC}\) (hai góc tương ứng)
Xét tam giác OBC có:
\(\widehat {OCB} + \widehat {CBO} + \widehat {BOC}\) = 180°.
Mà \(\widehat {OCB} = \widehat {CBO}\) do \(\widehat {ACB} = \widehat {DBC}\) nên \(2\widehat {CBO} + \widehat {BOC}\)= 180°
Suy ra \(2\widehat {CBO}\) = 180° – \(\widehat {BOC}\)
Do đó, \(\widehat {CBO} = \frac{{180^\circ - \widehat {BOC}}}{2}\) (1)
Xét ∆ABD và ∆DCA có:
AB = CD (giả thiết)
BD = AC (chứng minh trên)
AD chung
Do đó, ∆ABD = ∆DCA (c – c – c).
Suy ra, \(\widehat {ADB} = \widehat {DAC}\).
Xét tam giác OAD có:
\(\widehat {OAD} + \widehat {ADO} + \widehat {AOD}\) = 180°.
Mà \(\widehat {OAD} = \widehat {ADO}\) do \(\widehat {ADB} = \widehat {DAC}\) nên \(2\widehat {ADO} + \widehat {AOD}\)= 180°
Suy ra \(2\widehat {ADO}\) = 180° – \(\widehat {AOD}\)
Do đó, \(\widehat {ADO} = \frac{{180^\circ - \widehat {AOD}}}{2}\) (2)
Mà \(\widehat {AOD}\) = \(\widehat {BOC}\) (hai góc đối đỉnh) (3)
Từ (1), (2), (3) suy ra, \(\widehat {CBO} = \)\(\widehat {ADO}\) hay \(\widehat {CBD} = \widehat {ADB}\).
Mà hai góc này ở vị trí so le trong nên AD // BC.
Hot: Học hè online Toán, Văn, Anh...lớp 1-12 tại Vietjack với hơn 1 triệu bài tập có đáp án. Học ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Hướng dẫn giải
Vì ABCD là hình vuông nên AB = BC = CD = DA.
Vì N là trung điểm của AD nên AN = ND = \(\frac{{AD}}{2}\).
Vì M là trung điểm của AB nên AM = MB = \(\frac{{AB}}{2}\).
Mà AB = AD nên AN = BM.
Xét ∆ANB và ∆BMC có:
AN = BM (chứng minh trên)
AB = BC (chứng minh trên)
\(\widehat {NAB}\) = \(\widehat {MBC}\) = 90° (do ABCD là hình vuông)
Do đó, ∆ANB = ∆BMC (hai cạnh góc vuông)
Suy ra, BN = CM (hai cạnh tương ứng).
Gọi E là giao điểm của BN và CM.
Do ∆ANB = ∆BMC nên \(\widehat {EMB} = \widehat {CMB} = \widehat {BNA}\).
Từ định lí tổng ba góc trong tam giác BME và tam giác ABN, ta suy ra:
\(\widehat {BEM} = 180^\circ - \widehat {EMB} - \widehat {MBE} = 180^\circ - \widehat {BNA} - \widehat {ABN} = \widehat {BAN} = 90^\circ \).
Vậy BN vuông góc với CM tại E.
Lời giải
Hướng dẫn giải
Xét ∆ABC và ∆ABD có:
AB chung
\(\widehat {CAB}\) = \(\widehat {DAB}\) (giả thiết)
\(\widehat {ACB}\) = \(\widehat {ADB}\) = 90° (giả thiết)
Do đó, ∆ABC = ∆ABD (cạnh huyền – góc nhọn).
Suy ra CB = DB.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Đề kiểm tra cuối học kỳ 2 Toán 7 Kết nối tri thức có đáp án - Đề 1
Đề kiểm tra cuối học kỳ 2 Toán 7 Kết nối tri thức có đáp án - Đề 2
Bộ 7 đề thi học kì 2 Toán lớp 7 Chân trời sáng tạo có đáp án - Đề 04
15 câu Trắc nghiệm Toán 7 Kết nối tri thức Bài 1: Tập hợp các số hữu tỉ có đáp án
Bộ 7 đề thi học kì 2 Toán 7 Cánh Diều có đáp án - Đề 01
Bộ 7 đề thi học kì 2 Toán lớp 7 Chân trời sáng tạo có đáp án - Đề 01
Đề kiểm tra cuối học kỳ 2 Toán 7 Kết nối tri thức có đáp án - Đề 3
Bộ 7 đề thi học kì 2 Toán 7 Cánh Diều có đáp án - Đề 02
Hãy Đăng nhập hoặc Tạo tài khoản để gửi bình luận