Câu hỏi:

12/07/2024 1,221

Cho bốn điểm A, B, C, D như Hình 4.40, trong đó AB = DC. Chứng minh rằng:

AD // BC.

Media VietJack

Sách mới 2k7: 30 đề đánh giá năng lực DHQG Hà Nội, Tp. Hồ Chí Minh, BKHN 2025 mới nhất (chỉ từ 110k).

Mua bộ đề Hà Nội Mua bộ đề Tp. Hồ Chí Minh Mua đề Bách Khoa

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Hướng dẫn giải

Media VietJack

Vì ∆ABC = ∆DCB nên \(\widehat {ACB} = \widehat {DBC}\) (hai góc tương ứng)

Xét tam giác OBC có:  

\(\widehat {OCB} + \widehat {CBO} + \widehat {BOC}\) = 180°.

Mà \(\widehat {OCB} = \widehat {CBO}\) do \(\widehat {ACB} = \widehat {DBC}\) nên \(2\widehat {CBO} + \widehat {BOC}\)= 180°

Suy ra \(2\widehat {CBO}\) = 180° – \(\widehat {BOC}\)

Do đó, \(\widehat {CBO} = \frac{{180^\circ - \widehat {BOC}}}{2}\) (1)

Xét ∆ABD và ∆DCA có:  

AB = CD (giả thiết)

BD = AC (chứng minh trên)

AD chung

Do đó, ∆ABD = ∆DCA (c – c – c).

Suy ra, \(\widehat {ADB} = \widehat {DAC}\).

Xét tam giác OAD có:

\(\widehat {OAD} + \widehat {ADO} + \widehat {AOD}\) = 180°.

Mà \(\widehat {OAD} = \widehat {ADO}\) do \(\widehat {ADB} = \widehat {DAC}\) nên \(2\widehat {ADO} + \widehat {AOD}\)= 180°

Suy ra \(2\widehat {ADO}\) = 180° – \(\widehat {AOD}\)

Do đó, \(\widehat {ADO} = \frac{{180^\circ - \widehat {AOD}}}{2}\) (2)

Mà \(\widehat {AOD}\) = \(\widehat {BOC}\) (hai góc đối đỉnh) (3)

Từ (1), (2), (3) suy ra, \(\widehat {CBO} = \)\(\widehat {ADO}\) hay \(\widehat {CBD} = \widehat {ADB}\).

Mà hai góc này ở vị trí so le trong nên AD // BC.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Cho hình vuông ABCD. Gọi M và N lần lượt là trung điểm của AB và AD (H.4.36). Chứng minh rằng BN = CM và BN CM.

Media VietJack

Xem đáp án » 13/07/2024 6,559

Câu 2:

Cho bốn điểm A, B, C, D như Hình 4.37. Biết rằng \(\widehat {DAB} = \widehat {CAB}\), hãy chứng minh CB = DB.

Media VietJack

Xem đáp án » 13/07/2024 1,984

Câu 3:

Cho các điểm A, B, C, D, E như Hình 4.34. Biết rằng E là trung điểm của BC, chứng minh rằng ∆ABE = ∆DCE.

Media VietJack

Xem đáp án » 13/07/2024 1,783

Câu 4:

Cho hình chữ nhật ABCD. Trên cạnh AD và BC lần lượt lấy hai điểm E và F sao cho AE = CF (H.4.41). Chứng minh rằng:

AF // CE.

Media VietJack

Xem đáp án » 13/07/2024 1,617

Câu 5:

Cho AH và DK lần lượt là hai đường cao của hai tam giác ABC và DEF như Hình 4.38. Biết rằng ∆ABC = ∆DEF, hãy chứng minh AH = DK.

Media VietJack

Xem đáp án » 13/07/2024 1,563

Câu 6:

Cho hình chữ nhật ABCD. Trên cạnh AD và BC lần lượt lấy hai điểm E và F sao cho AE = CF (H.4.41). Chứng minh rằng:

AF = CE.

Media VietJack

Xem đáp án » 12/07/2024 1,366

Câu 7:

Cho AH và DK lần lượt là hai đường cao của tam giác ABC và DEF như Hình 4.39. Chứng minh rằng:

Nếu AB = DE; BC = EF và AH = DK thì ∆ABC = ∆DEF;

Media VietJack

Xem đáp án » 13/07/2024 1,330

Bình luận


Bình luận