Câu hỏi:

11/07/2024 418

Biểu diễn các vectơ \(\overrightarrow u + \overrightarrow v ,\,\,\overrightarrow u - \overrightarrow v \), \(k\overrightarrow u \) (k ) theo hai vectơ \(\overrightarrow i \) và \(\overrightarrow j \).

Sách mới 2k7: Bộ 20 đề minh họa Toán, Lí, Hóa, Văn, Sử, Địa…. form chuẩn 2025 của Bộ giáo dục (chỉ từ 49k/cuốn).

Đề toán-lý-hóa Đề văn-sử-địa Tiếng anh & các môn khác

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Lời giải:

Để biểu diễn vectơ \(\overrightarrow u + \overrightarrow v \) theo hai vectơ \(\overrightarrow i \) và \(\overrightarrow j \), ta làm như sau:

Do \(\overrightarrow u = {x_1}\overrightarrow i + {y_1}\overrightarrow j \,\,,\,\,\overrightarrow v = {x_2}\overrightarrow i + {y_2}\overrightarrow j \), vậy nên:

\(\overrightarrow u + \overrightarrow v \)\( = \left( {{x_1}\overrightarrow i + {y_1}\overrightarrow j \,\,} \right) + \left( {{x_2}\overrightarrow i + {y_2}\overrightarrow j } \right)\)\[ = \left( {{x_1}\overrightarrow i + {x_2}\overrightarrow i \,} \right) + \left( {{y_1}\overrightarrow j \, + {y_2}\overrightarrow j } \right)\]\( = \left( {{x_1} + {x_2}} \right)\overrightarrow i + \left( {{y_1} + {y_2}} \right)\overrightarrow j \).

Tương tự, ta có:

\(\overrightarrow u - \overrightarrow v \)\( = \left( {{x_1}\overrightarrow i + {y_1}\overrightarrow j \,\,} \right) - \left( {{x_2}\overrightarrow i + {y_2}\overrightarrow j } \right)\)\[ = \left( {{x_1}\overrightarrow i - {x_2}\overrightarrow i \,} \right) + \left( {{y_1}\overrightarrow j \, - {y_2}\overrightarrow j } \right)\]\( = \left( {{x_1} - {x_2}} \right)\overrightarrow i + \left( {{y_1} - {y_2}} \right)\overrightarrow j \).

\(k\overrightarrow u = k\left( {{x_1}\overrightarrow i + {y_1}\overrightarrow j } \right) = k{x_1}\overrightarrow i + k{y_1}\overrightarrow j = \left( {k{x_1}} \right)\overrightarrow i + \left( {k{y_1}} \right)\overrightarrow j \) (k ℝ).

Bình luận


Bình luận

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Trong mặt phẳng tọa độ Oxy, cho A(– 2; 3) ; B(4; 5); C(2; – 3).

Chứng minh ba điểm A, B, C không thẳng hàng.

Xem đáp án » 11/07/2024 19,739

Câu 2:

Tìm tọa độ điểm D sao cho tứ giác ABCD là hình thang có AB // CD và CD = 2AB.

Xem đáp án » 13/07/2024 19,365

Câu 3:

Tìm tọa độ điểm C sao cho G là trọng tâm của tam giác ABC.

Xem đáp án » 13/07/2024 11,677

Câu 4:

Tìm tọa độ điểm M trên đường thẳng BC sao cho diện tích của tam giác ABC bằng hai lần diện tích của tam giác ABM.

Xem đáp án » 13/07/2024 10,467

Câu 5:

Tìm tọa độ trọng tâm G của tam giác ABC.

Xem đáp án » 13/07/2024 10,096

Câu 6:

Trong mặt phẳng tọa độ Oxy, cho tam giác ABC có trung điểm các cạnh BC, CA, AB tương ứng là M(2; 0); N(4; 2); P(1; 3).

Tìm tọa độ các điểm A, B, C.

Xem đáp án » 04/07/2022 9,453

Câu 7:

B. Bài tập

Trong mặt phẳng tọa độ Oxy, cho \(\overrightarrow a = \left( { - 1;\,\,2} \right)\), \(\overrightarrow b = \left( {3;\,\,1} \right)\), \(\overrightarrow c = \left( {2;\, - 3} \right)\).

Tìm tọa độ vectơ \(\overrightarrow u = 2\overrightarrow a + \overrightarrow b - 3\overrightarrow c \).

Xem đáp án » 04/07/2022 8,393
Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Siêu tiết kiệm - Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua