Câu hỏi:

11/07/2024 466

Biểu diễn các vectơ \(\overrightarrow u + \overrightarrow v ,\,\,\overrightarrow u - \overrightarrow v \), \(k\overrightarrow u \) (k ) theo hai vectơ \(\overrightarrow i \) và \(\overrightarrow j \).

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Lời giải:

Để biểu diễn vectơ \(\overrightarrow u + \overrightarrow v \) theo hai vectơ \(\overrightarrow i \) và \(\overrightarrow j \), ta làm như sau:

Do \(\overrightarrow u = {x_1}\overrightarrow i + {y_1}\overrightarrow j \,\,,\,\,\overrightarrow v = {x_2}\overrightarrow i + {y_2}\overrightarrow j \), vậy nên:

\(\overrightarrow u + \overrightarrow v \)\( = \left( {{x_1}\overrightarrow i + {y_1}\overrightarrow j \,\,} \right) + \left( {{x_2}\overrightarrow i + {y_2}\overrightarrow j } \right)\)\[ = \left( {{x_1}\overrightarrow i + {x_2}\overrightarrow i \,} \right) + \left( {{y_1}\overrightarrow j \, + {y_2}\overrightarrow j } \right)\]\( = \left( {{x_1} + {x_2}} \right)\overrightarrow i + \left( {{y_1} + {y_2}} \right)\overrightarrow j \).

Tương tự, ta có:

\(\overrightarrow u - \overrightarrow v \)\( = \left( {{x_1}\overrightarrow i + {y_1}\overrightarrow j \,\,} \right) - \left( {{x_2}\overrightarrow i + {y_2}\overrightarrow j } \right)\)\[ = \left( {{x_1}\overrightarrow i - {x_2}\overrightarrow i \,} \right) + \left( {{y_1}\overrightarrow j \, - {y_2}\overrightarrow j } \right)\]\( = \left( {{x_1} - {x_2}} \right)\overrightarrow i + \left( {{y_1} - {y_2}} \right)\overrightarrow j \).

\(k\overrightarrow u = k\left( {{x_1}\overrightarrow i + {y_1}\overrightarrow j } \right) = k{x_1}\overrightarrow i + k{y_1}\overrightarrow j = \left( {k{x_1}} \right)\overrightarrow i + \left( {k{y_1}} \right)\overrightarrow j \) (k ℝ).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Hướng dẫn giải

 Ta có: \(\overrightarrow {AB} = \left( {4 - \left( { - 2} \right);\,5 - 3} \right) = \left( {6;\,2} \right)\), \(\overrightarrow {AC} = \left( {2 - \left( { - 2} \right);\,\left( { - 3} \right) - 3} \right) = \left( {4;\,\, - 6} \right)\).

Vì \(\frac{6}{4} \ne \frac{{ - 3}}{{ - 6}}\) nên \(\overrightarrow {AB} \ne k\overrightarrow {AC} \).

Vậy ba điểm A, B, C không thẳng hàng.

Lời giải

Hướng dẫn giải:

Gọi tọa độ điểm D(x; y).

Ta có: \(\overrightarrow {DC} = \left( {6 - x;\left( { - 2} \right) - y} \right)\).

Vì hình thanh ABCD có AB // CD nên hai vectơ \(\overrightarrow {AB} ,\,\,\overrightarrow {DC} \) cùng hướng và CD = 2AB, do đó \(\overrightarrow {DC} = 2\overrightarrow {AB} \).

Ta có: \(2\overrightarrow {AB} = 2\left( {3;\,\,2} \right) = \left( {6;\,4} \right)\).

Do đó: \(\overrightarrow {DC} = 2\overrightarrow {AB} \)\( \Leftrightarrow \overrightarrow {DC} = \left( {6;4} \right) \Leftrightarrow \left\{ \begin{array}{l}6 - x = 6\\\left( { - 2} \right) - y = 4\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}x = 0\\y = - 6\end{array} \right.\).

Vậy tọa độ điểm D là D(0; – 6).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP