Câu hỏi:
13/07/2024 612Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).
Quảng cáo
Trả lời:
Hướng dẫn giải:
Để xác định điểm M, ta làm như sau:
- Từ đểm O, kẻ đường thẳng d song song với giá của vectơ \(\overrightarrow {AB} \) (chính là đường thẳng AB).
- Lấy điểm M trên đường thẳng d sao cho hai vectơ \(\overrightarrow {AB} ,\,\,\overrightarrow {OM} \) cùng hướng và độ dài đoạn thẳng OM bằng độ dài vectơ \(\overrightarrow {AB} \) (chính là độ dài đoạn thẳng AB).
Ta xác định được điểm M thỏa mãn \(\overrightarrow {OM} = \overrightarrow {AB} \) như hình vẽ:
Từ điểm M, kẻ đường thẳng vuông góc với trục hoành, đường thẳng này cắt trục hoành tại điểm ứng với số 2, nên hoành độ của điểm M là xM = 2.
Từ điểm M, kẻ đường thẳng vuông góc với trục tung, đường thẳng này cắt trục tung tại điểm ứng với số 1, nên tung độ của điểm M là yM = 1.
Tọa độ của điểm M chính là tọa độ của vectơ \(\overrightarrow {OM} \) nên \(\overrightarrow {OM} = \left( {2;\,\,1} \right)\).
Lại có \(\overrightarrow {OM} = \overrightarrow {AB} \), do đó tọa độ của vectơ \(\overrightarrow {AB} \) là (2; 1).
Vậy hoành độ của vectơ \(\overrightarrow {AB} \) là a = 2 và tung độ của vectơ \(\overrightarrow {AB} \) là b = 1.
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Câu 3:
Câu 4:
Tìm các số thực a và b sao cho mỗi cặp vectơ sau bằng nhau:
\(\overrightarrow u = \left( {2a - 1; - 3} \right)\) và \(\overrightarrow v = \left( {3;\,4b + 1} \right)\);
Câu 5:
Biểu diễn vectơ \(\overrightarrow {OB} \) qua hai vectơ \(\overrightarrow i \) và \(\overrightarrow j \).
Câu 6:
Trong mặt phẳng toạ độ Oxy, cho ba điểm A(2; 3), B(– 1; 1), C(3; – 1).
Tìm toạ độ điểm M sao cho \(\overrightarrow {AM} = \overrightarrow {BC} \).
Câu 7:
về câu hỏi!