Câu hỏi:
13/07/2024 1,746
Cho \(\overrightarrow u = \left( {{x_1};\,\,{y_1}} \right),\,\,\overrightarrow v = \left( {{x_2};\,\,{y_2}} \right)\). Tính tích vô hướng của \(\overrightarrow u \,\,.\,\,\overrightarrow v \).
Quảng cáo
Trả lời:
Hướng dẫn giải:
Vì \(\overrightarrow u = \left( {{x_1};\,\,{y_1}} \right),\,\,\overrightarrow v = \left( {{x_2};\,\,{y_2}} \right)\).
Nên ta có: \(\overrightarrow u = {x_1}\overrightarrow i + {y_1}\overrightarrow j \,;\,\,\overrightarrow v = {x_2}\overrightarrow i + {y_2}\overrightarrow j \,\).
Do đó \(\overrightarrow u \,.\,\overrightarrow v = \left( {{x_1}\overrightarrow i + {y_1}\overrightarrow j } \right).\left( {\overrightarrow u = {x_2}\overrightarrow i + {y_2}\overrightarrow j } \right)\)\( = {x_1}{x_2}.{\overrightarrow i ^2} + {x_1}{y_2}.\left( {\overrightarrow i \,\,.\,\overrightarrow j } \right) + {y_1}{x_2}.\,\left( {\overrightarrow j \,\,.\,\overrightarrow i } \right) + {y_1}{y_2}.\,{\overrightarrow j ^2}\)
\( = {x_1}{x_2} + {y_1}{y_2}\) (do \({\overrightarrow i ^2} = {\left| {\overrightarrow i } \right|^2} = 1;\,\,{\overrightarrow j ^2} = {\left| {\overrightarrow j } \right|^2} = 1\); \(\overrightarrow i \,\,.\,\,\overrightarrow j = \overrightarrow j \,\,.\,\,\overrightarrow i = 0\))
Vậy \(\overrightarrow u \,\,.\,\,\overrightarrow v \)\( = {x_1}{x_2} + {y_1}{y_2}\).
Hot: Học hè online Toán, Văn, Anh...lớp 1-12 tại Vietjack với hơn 1 triệu bài tập có đáp án. Học ngay
- Sách - Sổ tay kiến thức trọng tâm Vật lí 10 VietJack - Sách 2025 theo chương trình mới cho 2k9 ( 31.000₫ )
- Trọng tâm Toán, Văn, Anh 10 cho cả 3 bộ KNTT, CTST, CD VietJack - Sách 2025 ( 13.600₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Hướng dẫn giải
Ta có: \(\overrightarrow {AB} = \left( {4 - \left( { - 2} \right);\,5 - 3} \right) = \left( {6;\,2} \right)\), \(\overrightarrow {AC} = \left( {2 - \left( { - 2} \right);\,\left( { - 3} \right) - 3} \right) = \left( {4;\,\, - 6} \right)\).
Vì \(\frac{6}{4} \ne \frac{{ - 3}}{{ - 6}}\) nên \(\overrightarrow {AB} \ne k\overrightarrow {AC} \).
Vậy ba điểm A, B, C không thẳng hàng.
Lời giải
Hướng dẫn giải:
Gọi tọa độ điểm D(x; y).
Ta có: \(\overrightarrow {DC} = \left( {6 - x;\left( { - 2} \right) - y} \right)\).
Vì hình thanh ABCD có AB // CD nên hai vectơ \(\overrightarrow {AB} ,\,\,\overrightarrow {DC} \) cùng hướng và CD = 2AB, do đó \(\overrightarrow {DC} = 2\overrightarrow {AB} \).
Ta có: \(2\overrightarrow {AB} = 2\left( {3;\,\,2} \right) = \left( {6;\,4} \right)\).
Do đó: \(\overrightarrow {DC} = 2\overrightarrow {AB} \)\( \Leftrightarrow \overrightarrow {DC} = \left( {6;4} \right) \Leftrightarrow \left\{ \begin{array}{l}6 - x = 6\\\left( { - 2} \right) - y = 4\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}x = 0\\y = - 6\end{array} \right.\).
Vậy tọa độ điểm D là D(0; – 6).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.