Câu hỏi:

13/07/2024 3,385 Lưu

Giải tam giác ABC (làm tròn các kết quả đến hàng đơn vị).

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Hướng dẫn giải:

Ta có: \(\overrightarrow {BC} = \left( {2 - 4;\,\left( { - 3} \right) - 5} \right) = \left( { - 2;\, - 8} \right)\).

Do đó: \(BC = \left| {\overrightarrow {BC} } \right| = \sqrt {{{\left( { - 2} \right)}^2} + {{\left( { - 8} \right)}^2}} = 2\sqrt {17} \approx 8\).

\(AB = \left| {\overrightarrow {AB} } \right| = \sqrt {{6^2} + {2^2}} = 2\sqrt {10} \approx 6\).

\(AC = \left| {\overrightarrow {AC} } \right| = \sqrt {{4^2} + {{\left( { - 6} \right)}^2}} = 2\sqrt {13} \approx 7\).

Ta có: \(\cos \widehat {BAC} = \cos \left( {\overrightarrow {AB} ,\;\overrightarrow {AC} } \right) = \frac{{\overrightarrow {AB} .\overrightarrow {AC} }}{{\left| {\overrightarrow {AB} } \right|.\,\left| {\overrightarrow {AC} } \right|}}\)\( = \frac{{6.4 + 2.\left( { - 6} \right)}}{{2\sqrt {10} .2\sqrt {13} }} \approx 0,26\).

Suy ra \(\widehat {BAC} = 75^\circ \).

Áp dụng hệ quả của định lí côsin trong tam giác ABC, ta có:

cosB = \(\frac{{B{A^2} + B{C^2} - A{C^2}}}{{2BA.BC}} = \frac{{{{\left( {2\sqrt {10} } \right)}^2} + {{\left( {2\sqrt {17} } \right)}^2} - {{\left( {2\sqrt {13} } \right)}^2}}}{{2.2\sqrt {10} .2\sqrt {17} }} \approx 0,54\).

Suy ra \(\widehat {ABC} = \widehat B = 57^\circ \).

Theo định lí tổng ba góc trong tam giác ABC, ta có:

\(\widehat {BAC} + \widehat {ABC} + \widehat {ACB} = 180^\circ \)

Suy ra \(\widehat {ACB} = 180^\circ - \widehat {BAC} - \widehat {ABC} = 180^\circ - 75^\circ - 57^\circ = 48^\circ \).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Hướng dẫn giải

 Ta có: \(\overrightarrow {AB} = \left( {4 - \left( { - 2} \right);\,5 - 3} \right) = \left( {6;\,2} \right)\), \(\overrightarrow {AC} = \left( {2 - \left( { - 2} \right);\,\left( { - 3} \right) - 3} \right) = \left( {4;\,\, - 6} \right)\).

Vì \(\frac{6}{4} \ne \frac{{ - 3}}{{ - 6}}\) nên \(\overrightarrow {AB} \ne k\overrightarrow {AC} \).

Vậy ba điểm A, B, C không thẳng hàng.

Lời giải

Hướng dẫn giải:

Gọi tọa độ điểm D(x; y).

Ta có: \(\overrightarrow {DC} = \left( {6 - x;\left( { - 2} \right) - y} \right)\).

Vì hình thanh ABCD có AB // CD nên hai vectơ \(\overrightarrow {AB} ,\,\,\overrightarrow {DC} \) cùng hướng và CD = 2AB, do đó \(\overrightarrow {DC} = 2\overrightarrow {AB} \).

Ta có: \(2\overrightarrow {AB} = 2\left( {3;\,\,2} \right) = \left( {6;\,4} \right)\).

Do đó: \(\overrightarrow {DC} = 2\overrightarrow {AB} \)\( \Leftrightarrow \overrightarrow {DC} = \left( {6;4} \right) \Leftrightarrow \left\{ \begin{array}{l}6 - x = 6\\\left( { - 2} \right) - y = 4\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}x = 0\\y = - 6\end{array} \right.\).

Vậy tọa độ điểm D là D(0; – 6).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP