Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).
Quảng cáo
Trả lời:
d)
Để ∆SRQ = ∆IKH theo trường hợp góc – cạnh – góc thì một cạnh và hai góc kề của tam giác này bằng một cạnh và hai góc kề của tam giác kia.
Mà hai tam giác này có và
Mặt khác, trong DSRQ, và là hai góc kề của cạnh QS;
Trong ∆IKH, và là hai góc kề của cạnh HI.
Do đó điều kiện còn lại là điều kiện về cạnh, đó là QS = HI.
Vậy Hình 31d cần thêm điều kiện QS = HI.
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Cho tam giác ABC có AB = AC. Gọi D là trung điểm của BC. Vẽ CM vuông góc với AB tại M, BN vuông góc với AC tại N. Chứng minh AM = AN.
Câu 2:
Cho tam giác ABC có , M là trung điểm của BC. Chứng minh BC = 2AM.
Câu 3:
Câu 4:
Cho Hình 32 có , AH vuông góc với BC tại H, , Ay là tia đối của tia Ax. BD và CE vuông góc với xy lần lượt tại D và E. Chứng minh:
a) AC là tia phân giác của góc
Câu 5:
Cho tam giác ABC có ba góc đều nhọn và Tia phân giác của góc ABC cắt AC tại D, tia phân giác của góc ACB cắt AB tại E. BD cắt CE tại I. Tia phân giác của góc BIC cắt BC tại F. Chứng minh:
a) ;
Câu 6:
Nêu thêm một điều kiện để hai tam giác trong mỗi hình 31a, 31b, 31c, 31d là hai tam giác bằng nhau theo trường hợp góc – cạnh – góc.
a) ∆CAB = ∆DBA (Hình 31a).
về câu hỏi!