Câu hỏi:

13/07/2024 1,588

Cho góc xOy khác góc bẹt. Oz là tia phân giác của góc đó, M là một điểm bất kì thuộc tia Oz. Qua M vẽ đường thẳng a vuông góc với Ox tại A, cắt Oy tại C. Qua M vẽ đường thẳng b vuông góc với Oy tại B, cắt Ox tại D. Chứng minh:

a) OM là đường trung trực của đoạn thẳng AB;

Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).

Tổng ôn toán Tổng ôn sử Các môn khác

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Media VietJack

a) Vì Oz là tia phân giác của góc xOy nên xOz^=zOy^ .

 Xét DOAM và DOBM có

OAM^=OBM^=90°,

OM là cạnh chung,

AOM^=BOM^ (do xOz^=zOy^ )

Do đó ∆OAM = ∆OBM (cạnh huyền – góc nhọn).

Suy ra OA = OB và MA = MB (các cặp cạnh tương ứng).

Nên O và M cùng nằm trên đường trung trực của AB.

Vậy OM là đường trung trực của AB.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Cho tam giác ABC cân tại A. Đường trung trực của đoạn thẳng AC cắt cạnh AB tại D. Biết CD là tia phân giác của góc ACB. Tính số đo mỗi góc của tam giác ABC.

Xem đáp án » 13/07/2024 2,522

Câu 2:

Cho tam giác ABC vuông tại A có C^=30°  . Đường trung trực của BC cắt AC tại M. Chứng minh:

a) BM là tia phân giác của góc ABC;

Xem đáp án » 13/07/2024 2,392

Câu 3:

Một con đường liên xã cách không xa hai địa điểm dân cư và hai địa điểm này nằm ở cùng một phía của con đường. Hãy xác định một địa điểm trên con đường đó để xây dựng nhà văn hóa xã sao cho nhà văn hóa đó cách đều hai địa điểm dân cư.

Xem đáp án » 13/07/2024 2,270

Câu 4:

Cho góc xOy nhọn. Trên tia Ox lấy điểm A, trên tia Oy lấy điểm B sao cho OA = OB. Đường trung trực của đoạn thẳng OA và đường trung trực của đoạn thẳng OB cắt nhau tại I. Chứng minh:

a) OI là tia phân giác của góc xOy;

Xem đáp án » 13/07/2024 2,084

Câu 5:

b) Tam giác ABC có góc B là góc tù;

Xem đáp án » 13/07/2024 1,499

Câu 6:

Quan sát Hình 44, biết ∆MAB = ∆NAB. Chứng minh đường thẳng AB là đường trung trực của đoạn thẳng MN.

Media VietJack

Xem đáp án » 12/07/2024 1,375

Bình luận


Bình luận
Đăng ký gói thi VIP

VIP 1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 2 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 3 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 4 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Siêu tiết kiệm - Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

Vietjack official store