Câu hỏi:

12/07/2024 3,560

Cho hình thang cân ABCD (AB // CD) có AB = 3, BC = CD = 13 (cm). Kẻ các đường cao AK và BH.

a) Chứng minh rằng CH = DK.

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack
Cho hình thang cân ABCD (AB // CD) có AB = 3, BC = CD = 13 (cm). Kẻ các đường cao AK và BH.  a) Chứng minh rằng CH = DK. (ảnh 1)

a) ΔBCH ΔADK H^=K^=90° có cạnh huyền BC = AD (cạnh bên hình thang cân), góc nhọn C=D (góc đáy hình thang cân).

Do đó ΔBCH=ΔADK (cạnh huyền, góc nhon), suy ra CH = DK.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Cho hình thang  ABCD (AB // CD)   . AC cắt BD tại O. Biết OA = OB  . Chứng minh rằng:  ABCD là hình thang cân. (ảnh 1)

Vì OA = OB nên tam giác OAB cân tại O

OAB^=OBA^ 

Ta có OCD^=OAB^=OBA^=ODC^ 

=> tam giác OCD cân tại O => OC = OD 

Suy ra AC=OA+OC=OB+OD=BD 

Hình thang ABCD có hai đường chéo AC và BD bằng nhau nên ABCD là hình thang cân.

Lời giải

Cho hình thang cân ABCD (AB//CD, AB < CD). AD cắt BC tại O. a) Chứng minh rằng OAB cân (ảnh 1)

a) Vì ABCD là hình thang cân nên  C^=D^ suy ra OCD là tam giác cân.

Ta có OAB^=D^=C^=OBA^  (hai góc đồng vị)

=> Tam giác OAB cân tại O.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP