Câu hỏi:

19/10/2022 241

Cho hình bình hành ABCD. Trên các cạnh AB và CD lần lượt lấy các điểm M và N sao cho AM = DN. Đường trung trực của BM lần lượt cắt các đường thẳng MNBC tại E và F.

a) Chứng minh E và F đối xứng với nhau qua AB.

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack
Cho hình bình hành ABCD. Trên các cạnh AB và CD lần lượt lấy các điểm M và N  a) Chứng minh E và F đối xứng với nhau qua AB. (ảnh 1)

a) Do AM = DN => MADN là hình bình hành

D^=AMN^=EMB^=MBC^

Ta có MPE = BPE nên EP = FP. Vậy MEBF là hình thoi và 2 điểm E, F đối xứng nhau qua AB.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

c) Để BNCE là hình thang cân thì CNE^=BEN^

CNE^=D^=MBC^=EBM^ nên MEB có 3 góc bằng nhau, suy ra điều kiện để BNCE là hình thang cân thì ABC^=600

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP