Câu hỏi:

12/07/2024 1,824

Cho đường tròn (O) và dây AB. Vẽ tiếp tuyến xy // AB có M là tiếp điểm. Chứng minh rằng AMB  là tam giác cân.

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack
Cho đường tròn (O) và dây AB. Vẽ tiếp tuyến xy // AB có M là tiếp điểm. Chứng minh rằng tam giác AMB  là tam giác cân. (ảnh 1)

Ta có OMxy (tính chất của tiếp tuyến)

Mà xy // AB nên

Suy ra MA=MB (định lý đường kính vuông góc với dây cung)

Do đó MA = MB (hai cung bằng nhau căng hai dây bằng nhau)

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

a)

Cho đường tròn (O), hai đường kính AB và CD vuông góc với nhau, điểm M thuộc cung nhỏ BC.  (ảnh 1)

DAE^=sdDBM2   (góc nội tiếp) .

AFD^=sdDB+sdMB2=sdDBM2( góc có đỉnh ở bên trong đường tròn)

Suy ra DAE^=AFD^

Lời giải

a)

Từ một điểm A ở bên ngoài đường tròn (O), vẽ hai tiếp tuyến AB, AC với đường tròn (B và C là các tiếp điểm). Vẽ dây CD // AB. (ảnh 1)

ΔMBE ΔMCB 

M1^ chung; B1^=C2^ (góc tạo bởi tia tiếp tuyến và dây cung và góc nội tiếp cùng chắn cung BE)

Nên ΔMBE #  ΔMCB (g.g)

Suy ra MBMC=MEMB 

Do đó MB2 = MC.ME    

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP