Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

b) Tứ giác BIMK nội tiếp nên IKM^=IBM^;  (nội tiếp cùng chắn cung MI);KIM^=KBM.^ (nội tiếp cùng chắn cung KM)   

Tứ giác CIMK nội tiếp nên  ICM^=IHM^;(cùng chắn cung MI); MIH^=MCH.^  (cùng chắn cung MH)                                                                 

Xét đường tròn tâm (O) có : KBM^=BCM^;  (góc tạo bởi tiếp tuyến và dây cung(;MBI^=MCH.^  (góc tạo bởi tiếp tuyến và dây cung)           

Từ 1, 2, 3  suy ra KIM^=IHM^;MKI^=MIH.^

Do đó  ΔIMK~ΔMHI(g.g)

 MKMI=MIMHMI2=MK.MH.

Bình luận


Bình luận

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Cho đường tròn tâm O và điểm A nằm ngoài đường tròn. Kẻ hai tiếp tuyến AB, AC với đường tròn (B, C) là tiếp điểm. Trên cung nhỏ BC lấy một điểm M rồi kẻ các đường vuông góc MI, MH, MK xuống các cạnh BC, CA, AB. Gọi giao điểm của BM và IK là P; giao điểm của CM, IH là Q.

a)    Chứng minh rằng các tứ giác BIMK, CIMH nội tiếp được;

Xem đáp án » 12/07/2024 5,566

Câu 2:

Ta có : Tứ giác ABCD nội tiếp (O) Ta phải chứng minh:  AC. BD = AB. DC + AD. BC

Xem đáp án » 12/07/2024 3,770

Câu 3:

Cho nữa đường tròn tâm O đường kính AB , kẻ tiếp tuyến Bx và lấy hai điểm C và D thuộc nửa đường tròn. Các tia  AC và AD  cắt Bx lần lượt ở E, F (  F ở giữa B và E)

1. Chứng minh:ABD^=DFB^ .

Xem đáp án » 12/07/2024 3,229

Câu 4:

Cho tam giác ABC, 2 đường cao BB’, CC’. Chứng minh tứ   giác BCB’C’ nội tiếp.

Xem đáp án » 12/07/2024 2,738

Câu 5:

Cho nửa đường tròn đường kính BC=2R. Từ điểm A trên nửa đường tròn vẽ AHBC . Nửa đường tròn đường kính BH,  CH lần lượt có tâm O1 ; O2  cắt AB  và CA thứ tự tại D và E.

a) Chứng minh tứ giác ADHE  là hình chữ nhật, từ đó tính DE biết  R=25 và BH=10

Xem đáp án » 12/07/2024 2,664

Câu 6:

b) Chứng minh tứ giác BDEC nội tiếp đường tròn.

Xem đáp án » 12/07/2024 1,338
Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Siêu tiết kiệm - Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua