Câu hỏi:

12/07/2024 1,441

b) Chứng minh tứ giác BDEC nội tiếp đường tròn.

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

b) Ta có: BAH^  = C^  (góc có cạnh tương ứng vuông góc) mà DAH^=ADE^  (1)

(Vì ADHE  là hình chữ nhật) =>  C^=ADE^ do C^+BDE^=180o  nên tứ giác BDEC  nội tiếp đường tròn.

Lưu ý: Có thể hướng dẫn học sinh một cách sử dụng hệ thức lượng và tam giác đồng dạng như sau:

Tam giác AHB vuông tại H, đường cao AH. Ta có  AH2=AD.AB 

Tam giác AHC vuông tại H, đường cao AE. Ta có   AH2=AE.AC

Ta có  AD.AB=AE.ACADAC=AEAB

Xét tam giác ADE và tam giác ACB có ADAC=AEAB ,BAC^=DAE^=900  (góc chung)

ΔADEΔACBADE^=ACB^   ADE^+EDB^=1800  nên ADE^+ECB^=1800

Tứ giác BDEC có ADE^+ECB^=1800  nên tứ giác BDEC nội tiếp đường tròn. 

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Ta có : Tứ giác ABCD nội tiếp (O) Ta phải chứng minh:  AC. BD = AB. DC + AD. BC (ảnh 1)
Lấy E Î BD sao cho

Þ ΔDAE ΔCAB  (g. g)

ÞTa có : Tứ giác ABCD nội tiếp (O) Ta phải chứng minh:  AC. BD = AB. DC + AD. BC (ảnh 2)

Þ AD. BC = AC. DE (1)

Tương tự:  (g. g)

Þ  BECD=ABAC

Þ BE. AC = CD. AB (2)

Từ (1) và (2) Þ AD. BC + AB. CD = AC. DE + EB. AC

                    Þ AD. BC + AB. CD = AC. DB (đpcm)

Câu 3

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP