Câu hỏi:

20/10/2022 1,273

d) Gọi E là giao điểm của DH và CI. Gọi F là giao điểm thứ hai của đường tròn đường kính OD và đường tròn ngoại tiếp tam giác OIM. Chứng minh rằng O, E, F thẳng hàng.

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

d) Do OMC^=OIC^=90o  nên tứ giác OIMC nội tiếp đường tròn đường kính OC.

Đường tròn ngoại tiếp tam giác CIM là đường tròn đường kính OC.

=>  OFC^=90o

Mặt khác ta có OFD^=90o.Như vậy OFC;OFD kề bù suy ra ba điểm C, F, D thẳng hàng.

Xét tam giác OCD có ba đường cao CH, DI, OF mà có E là giao điểm CH, DI nên ba điểm O, E, F thẳng hàng.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

a)

Cho đường tròn (O) và điểm A nằm trên đường tròn. Gọi d là tiếp tuyến của (O) tại A. Trên d lấy điểm D (D không trùng với A),  (ảnh 1)

DA và DB là các tiếp tuyến của (O) nên   OBD^=OAD^=90o

Xét tứ giác AOBD có OBD^+OAD^=180o  , mà hai góc này ở vị trí đối diện nên tứ giác AOBD nội tiếp

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP