Câu hỏi:
20/10/2022 1,273
d) Gọi E là giao điểm của DH và CI. Gọi F là giao điểm thứ hai của đường tròn đường kính OD và đường tròn ngoại tiếp tam giác OIM. Chứng minh rằng O, E, F thẳng hàng.
d) Gọi E là giao điểm của DH và CI. Gọi F là giao điểm thứ hai của đường tròn đường kính OD và đường tròn ngoại tiếp tam giác OIM. Chứng minh rằng O, E, F thẳng hàng.
Quảng cáo
Trả lời:
d) Do nên tứ giác OIMC nội tiếp đường tròn đường kính OC.
Đường tròn ngoại tiếp tam giác CIM là đường tròn đường kính OC.
=>
Mặt khác ta có Như vậy OFC;OFD kề bù suy ra ba điểm C, F, D thẳng hàng.
Xét tam giác OCD có ba đường cao CH, DI, OF mà có E là giao điểm CH, DI nên ba điểm O, E, F thẳng hàng.
Hot: 500+ Đề thi vào 10 file word các Sở Hà Nội, TP Hồ Chí Minh có đáp án 2025 (chỉ từ 100k). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
a)

(gt) nên tứ giác BADC nội tiếp đường tròn tâm O là trung điểm của BC.
Lời giải
a)

DA và DB là các tiếp tuyến của (O) nên
Xét tứ giác AOBD có , mà hai góc này ở vị trí đối diện nên tứ giác AOBD nội tiếp
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.