Cho đoạn thẳng AB, điểm M di chuyển trên đoạn thẳng ấy . Vẽ các đường tròn có đường kính MA và MB . Xác định vị trí của điểm M để tổng diện tích của hai hình tròn có giá trị nhỏ nhất .
Cho đoạn thẳng AB, điểm M di chuyển trên đoạn thẳng ấy . Vẽ các đường tròn có đường kính MA và MB . Xác định vị trí của điểm M để tổng diện tích của hai hình tròn có giá trị nhỏ nhất .
Câu hỏi trong đề: Bài tập Toán 9 Chủ đề 7: Cực trị hình học có đáp án !!
Quảng cáo
Trả lời:
Đặt MA =x , MB = y
Ta có : x + y =AB (0 < x,y < AB)
Gọi S và S’ theo thứ tự là diện tích của hai hình tròn có đường kính là MA và MB .
Ta có: S +S’ = = .
Ta có bất đẳng thức : nên :
S +S’ =
Dấu đẳng thức xảy ra khi và chỉ khi x = y
Do đó min (S+S’) = . Khi đó M là trung điểm của AB.
Hot: 500+ Đề thi vào 10 file word các Sở Hà Nội, TP Hồ Chí Minh có đáp án 2025 (chỉ từ 100k). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
SADME lớn nhất lớn nhất
Kẻ BK vuông góc AC cắt MD ở H.
SADME = MD . HK
SABC = AC . BK
Đặt MB = x , MC = y ,
MD//AC ta có :
Theo bất đẳng thức
Dấu đẳng thức xảy ra khi x = y
Vậy max SADME = SABC khi đó M là trung điểm của BC.
Lời giải
Ta có : SMCD = MC.MD
Đặt MA = a , MB = b
MC = , MD =
SMCD =
Do a,b là hằng số nên SMCD nhỏ nhất 2sina.cosa lớn nhất .
Theo bất đẳng thức 2xy x2 +y2 ta có :
2sina.cosa sin2a +cos2a = 1 nên SMCD ≥ ab
SMCD = ab sina = cosa sina = sin(900-a) a = 900-a a = 450
Tam giác AMC và tam giác BMD vuông cân.
Vậy min SMCD = ab. Khi đó các điểm C,D được xác định trên tia Ax ; By sao cho AC = AM , BD = BMLời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.