Cho tam giác nhọn ABC nội tiếp đường tròn (O;R). Tiếp tuyến tại B và C của đường tròn (O;R) cắt nhau tại T, đường thẳng AT cắt đường tròn tại điểm thứ hai là D khác A. Chứng minh rằng : AB.CD = BD.AC
Cho tam giác nhọn ABC nội tiếp đường tròn (O;R). Tiếp tuyến tại B và C của đường tròn (O;R) cắt nhau tại T, đường thẳng AT cắt đường tròn tại điểm thứ hai là D khác A. Chứng minh rằng : AB.CD = BD.AC
Quảng cáo
Trả lời:

Có (g-g)
Chứng minh được (g-g)
Tiếp tuyến tại B và C cắt nhau tại T nên BT = CT (3)
Từ (1), (2), (3) có
Hot: 1000+ Đề thi cuối kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Ta có (nội tiếp chắn nửa đường tròn (O)) => .
Tứ giác AMEB có ; => mà đây là hai góc đối nên tứ giác AMEB nội tiếp một đường tròn =>
Tứ giác ABCD là tứ giác nội tiếp => ( nội tiếp cùng chắn cung CD)
=> => AM là tia phân giác của góc DAE (2)
Từ (1) và (2) ta có M là tâm đường tròn nội tiếp tam giác ADE.
Lời giải

( nội tiếp chắn nửa đường tròn ) ….
=> mà đây là hai góc đối của tứ giác MCID nên MCID là tứ giác nội tiếp.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.