Câu hỏi:

22/10/2022 464

Cho nửa đường tròn ( O) đường kính AB. Vẽ 2 tiếp tuyến Ax và By. Lấy M trên đường tròn sao cho AM < BM. AM cắt By tại F, BM cắt Ax tại E. Chứng minh các đường thẳng AB, CD, EF đồng quy.

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Media VietJack

Gọi giao điểm của AB và EF là S. Ta sẽ chứng minh S, C, D thằng hàng.

Giả sử SC cắt BF tại D’. Vì AE // BF nên theo định lí Ta-let, có:

D’ là trung điểm của BF

D trùng với D’ hay S, C, D thẳng hàng.

Vậy ba đường thẳng AB, EF, CD đồng quy tại S.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Ta có MEC^ = 900  (nội tiếp chắn nửa đường tròn (O)) =>MEB^ = 900 .

Tứ giác AMEB có MAB^ = 900 ; MEB ^= 900 => MAB ^+ MEB ^= 1800 mà đây là hai góc đối nên tứ giác AMEB nội tiếp một đường tròn =>  A2^= B2^.

Tứ giác ABCD là tứ giác nội tiếp => A1^= B2^ ( nội tiếp cùng chắn cung CD)

=> A^1= A2^ => AM là tia phân giác của góc DAE (2)

Từ (1) (2) ta có M là tâm đường tròn nội tiếp tam giác ADE.