Cho tam giác ABC có ba góc nhọn nội tiếp trong đường tròn (O;R). H là trực tâm của tam giác ABC. Vẽ đường kính AD của đường tròn (O) ; vẽ tại M.Gọi B',C' lần lượt là trung điểm của các cạnh CA,AB . Đường thẳng qua M song song với OA, đường thẳng qua B' song song với OB, đường thẳng qua C' song song với OC .Chứng minh rằng các đường thẳng đồng qui.
Quảng cáo
Trả lời:
Gọi N là giao điểm của với AH
có , M là trung điểm của HD
là trung điểm của AH
Ta có:
Do đó HNOM là hình bình hành.
đi qua trung điểm I của OH
Chứng minh tương tự có đi qua I
Vậy các đường thẳng đồng quy
Hot: 500+ Đề thi vào 10 file word các Sở Hà Nội, TP Hồ Chí Minh có đáp án 2025 (chỉ từ 100k). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Ta có (nội tiếp chắn nửa đường tròn (O)) => .
Tứ giác AMEB có ; => mà đây là hai góc đối nên tứ giác AMEB nội tiếp một đường tròn =>
Tứ giác ABCD là tứ giác nội tiếp => ( nội tiếp cùng chắn cung CD)
=> => AM là tia phân giác của góc DAE (2)
Từ (1) và (2) ta có M là tâm đường tròn nội tiếp tam giác ADE.
Lời giải
( nội tiếp chắn nửa đường tròn ) ….
=> mà đây là hai góc đối của tứ giác MCID nên MCID là tứ giác nội tiếp.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.