Câu hỏi:

24/10/2022 798 Lưu

Cho ∆ABC (AC > AB, BAC^=900). Gọi I, K theo thứ tự là trung điểm của AB, AC. Các đường tròn đường kính AB, AC cắt nhau tại điểm thứ hai D; tia BA cắt đường tròn (K) tại điểmt hứ hai E; tia CA cắt đường tròn (I) tại điểm thứ hai F. Chứng minh tứ giác BFEC nội tiép

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Media VietJack

Áp dụng định lý góc nội tiếp

chắn nửa đường tròn, ta có:

BFA=90°;CEA=90° ;

suy ra BFC^=BEC^=900 . Khi đó  E,F là hai đỉnh liên tiếp cùng nhìn BC dưới một góc bằng nhau.

Vậy tứ giác BFEC nội tiếp.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Ta có MEC^ = 900  (nội tiếp chắn nửa đường tròn (O)) =>MEB^ = 900 .

Tứ giác AMEB có MAB^ = 900 ; MEB ^= 900 => MAB ^+ MEB ^= 1800 mà đây là hai góc đối nên tứ giác AMEB nội tiếp một đường tròn =>  A2^= B2^.

Tứ giác ABCD là tứ giác nội tiếp => A1^= B2^ ( nội tiếp cùng chắn cung CD)

=> A^1= A2^ => AM là tia phân giác của góc DAE (2)

Từ (1) (2) ta có M là tâm đường tròn nội tiếp tam giác ADE.