Câu hỏi:

11/07/2024 516

Cho các tam giác ABC,  A'B'C'  có G, G’ lần lượt là trọng tâm . Chứng minh rằng: AA'+BB'+CC'=3GG' . Từ đó suy ra điều kiện cần và đủ để hai tam giác có cùng trọng tâm .

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Ta có AA'+BB'+CC'

=AG+GG'+G'A'+BG+GG'+G'B'+CG+GG'+G'C'

=3GG'+AG+BG+CG+G'A+G'B+G'C=3GG'

Suy ra điều kiện cần và đủ để hai tam giác có cùng trọng tâm là

AA'+BB'+CC'=0

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

Lời giải

b) Với I là điểm được xác định ở câu a, ta có: 2MA+3MB+4MC=9MI+(2IA+3IB+4IC)=9MI

 MBMA=AB  nên |2MA+3MB+4MC|=|MBMA||9MI|=|AB|MI=AB9

Vậy quỹ tích của M là đường tròn tâm I bán kính AB9 .

Chọn C

Lời giải

a) Ta có: 2IA+3IB+4IC=02IA+3(IA+AB)+4(IA+AC)=0

9IA=3AB4ACIA=3AB+4AC9I tồn tại và duy nhất.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP